China wholesaler Small Electric Vacuum Air Suction Pump vacuum pump brakes

Product Description

Small Electric Vacuum Air Suction Pump

Item:rotary vane vacuum pump

Specification:
1.pressure:>280mmhg
2.vacuum degree<-2 China, HangZhou, ZHangZhoug, China.

ONEREEL is specialized in the design and manufacture Steel Spools, Plastic Spools, Cable roller, Yarn Bobbin,  aluminum spool , Cable Reel Stand,  Sheave Pulley, Cable Conveyor, Hydraulic Puller Tensioner, Gin Poles, Cable Pulling Winch, Safety Tools, Wire Grip, Plastic Parts, and Pump in the industry since 1991. All of our customer spool and wire carrier are engineered and manufactured in our 120,000 square foot state-of-the-art manufacturing plant located in HangZhou, ZHangZhoug.
ONEREEL is specialized in the manufacture of reels for cables and electric wires, iron axles, disc spool for steel cables and various delivery reels. With strong technological capabilities and full series of production equipment. All of our products go through the dynamic and static balance tests. We have passed the quality system certification ISO9001:2000 to ensure the product quality. Following the standards of GB4004-83, JB/T8997, DIN46395 and DIN46397 in productions. 

 

 

Hot Product

Our Customer

 

 

Packaging & Transportation

 

Authoritative Certificate

 

 

FAQ

Q1: Can I get samples?
A: According to spool model and material, we will advise.
Q2: How long is the sample LEAD TIME? 
A: For existing samples, it takes 2-3 days. If no stock, we will advise lead time.
Q3: Can you develop new products?
A: Yes, we have new products developing ability and we are good at developing new mold.
Q4: How much is the freight charge?
A: It depends on spool package volume, if small quantity, volume and urgent goods, 
we may advise FEDEX or other couriers’ charge for your check. 
If volume bigger and by seaway suitable, we provide FOB or CIF price to you.
Q5: What format of the file do you need if I want my own design?
A: We have our own mound workshop and can provide spool or other plastic product developing and injection service.
Q6: How about your service?
A: We have pre-sale service, in-sale service and after-sale service. As “Customer First” is the most important principle of company operation.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Forever
Warranty: One Year
Oil or Not: Oil Free
Structure: No
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Furnaces?

Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:

Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.

Here are some key points regarding the use of vacuum pumps in vacuum furnaces:

1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.

2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.

3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.

4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.

5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.

6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.

7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.

8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.

Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.

vacuum pump

Can Vacuum Pumps Be Used for Leak Detection?

Yes, vacuum pumps can be used for leak detection purposes. Here’s a detailed explanation:

Leak detection is a critical task in various industries, including manufacturing, automotive, aerospace, and HVAC. It involves identifying and locating leaks in a system or component that may result in the loss of fluids, gases, or pressure. Vacuum pumps can play a significant role in leak detection processes by creating a low-pressure environment and facilitating the detection of leaks through various methods.

Here are some ways in which vacuum pumps can be used for leak detection:

1. Vacuum Decay Method: The vacuum decay method is a common technique used for leak detection. It involves creating a vacuum in a sealed system or component using a vacuum pump and monitoring the pressure change over time. If there is a leak present, the pressure will gradually increase due to the ingress of air or gas. By measuring the rate of pressure rise, the location and size of the leak can be estimated. Vacuum pumps are used to evacuate the system and establish the initial vacuum required for the test.

2. Bubble Testing: Bubble testing is a simple and visual method for detecting leaks. In this method, the component or system being tested is pressurized with a gas, and then immersed in a liquid, typically soapy water. If there is a leak, the gas escaping from the component will form bubbles in the liquid, indicating the presence and location of the leak. Vacuum pumps can be used to create a pressure differential that forces gas out of the leak, making it easier to detect the bubbles.

3. Helium Leak Detection: Helium leak detection is a highly sensitive method used to locate extremely small leaks. Helium, being a small atom, can easily penetrate small openings and leaks. In this method, the system or component is pressurized with helium gas, and a vacuum pump is used to evacuate the surrounding area. A helium leak detector is then used to sniff or scan the area for the presence of helium, indicating the location of the leak. Vacuum pumps are essential for creating the low-pressure environment required for this method and ensuring accurate detection.

4. Pressure Change Testing: Vacuum pumps can also be used in pressure change testing for leak detection. This method involves pressurizing a system or component and then isolating it from the pressure source. The pressure is monitored over time, and any significant pressure drop indicates the presence of a leak. Vacuum pumps can be used to evacuate the system after pressurization, returning it to atmospheric pressure for comparison or retesting.

5. Mass Spectrometer Leak Detection: Mass spectrometer leak detection is a highly sensitive and precise method used to identify and quantify leaks. It involves introducing a tracer gas, usually helium, into the system or component being tested. A vacuum pump is used to evacuate the surrounding area, and a mass spectrometer is employed to analyze the gas samples for the presence of the tracer gas. This method allows for accurate detection and quantification of leaks down to very low levels. Vacuum pumps are crucial for creating the necessary vacuum conditions and ensuring reliable results.

In summary, vacuum pumps can be effectively used for leak detection purposes. They facilitate various leak detection methods such as vacuum decay, bubble testing, helium leak detection, pressure change testing, and mass spectrometer leak detection. Vacuum pumps create the required low-pressure environment, assist in evacuating the system or component being tested, and enable accurate and reliable leak detection. The choice of vacuum pump depends on the specific requirements of the leak detection method and the sensitivity needed for the application.

vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China wholesaler Small Electric Vacuum Air Suction Pump   vacuum pump brakesChina wholesaler Small Electric Vacuum Air Suction Pump   vacuum pump brakes
editor by Dream 2024-05-15

China Professional Water Circulating Diaphragm Vacuum Pump vacuum pump electric

Product Description

CHARACTERISTICS OF USE

  • Be suitable for the research experiment, small scale test and small scale production process which have the processes such as evaporation, distillation, crystallization, drying, sublimation, filtration and decompression, degassing.
  • The operation principle is the same as that of desk-top type pump.
  • Compared with the desk-top type pump, the bleed air flow is more, which applies to the vacuum demands with large bleed air flow.
  • Five taps can be used alone or in parallel. The bleed air flow is large with five-way pipe iin parallel, which can meet the demand of large scale Rotary Evaporator or Reaction Kettle.
  • The special machine is made by the famous electric manufacture ODM with fluorine rubber sealing, the inner of which can’t be intruded by corrosive gas.
  • The body of the flume adopts polyvinyl chloride (PVC) material, the casing adopts carbon constructional quality steel cold rolling plate and the surface adopts electrostatic spraying.
  • Ejector with copper material, tee junction, back valve and gas-extraction nozzle adopt the PP material.
  • The pump body and impeller adopt stainless steel plate pressing (SUS standard).
  • Be furnished with truckles, which is convenient for moving and is suitable for the flexible configuration in labs and workshops.
  • Need to replace the water in the flume regularly to ensure the purity of water quality, the vacuum degree and to avoid dirt stains.
  • Can be used to extract corrosive gas, need to shorten the period of water changing.
  • VP-B95A: the casing adopts stainless steel material (SUS standard), the rest is the same as VP-B95.

VP-95T

  • Multi-purpose Vacuum Pump adopts the latest technology to make the service life longer, antiseptic property better and more reliable.
  • Based on VP-B95A type, the function and basic material are the same as those of VP-B95A type.
  • Spray paint Teflon (PTFE)on the ejector and gas-extraction nozzle, gas pipeline adopts fluorine rubber material.

SPECIFICATIONS

Model VP-B95T VP-B95 VP-B95A
Power (W) 550 550
Power supply  (V/Hz) 220/50 220/50
Flow (L/min) 100 100
Lift  (m) 12 12
Safety functions Check valve Check valve
Materials Of Machine Casing 304 Static electricity spray 304 SS
Maximum Vacuum Degree  (MPa) 0.098 0.098
Single Tap Air Sucking Amount (L/min) 10 10
Number of Taps (A) 5 5
Capacity of Water Storage Tank (L) 57 57
Materials of Water Tank Polyvinyl chloride Polyvinyl chloride
Dimensions (mm) 450L×350W×820H 450L×350W×820H 450L×350W×820H
Weight  (kg) 36 36 36

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Free Spare Parts
Warranty: 1 Year
Application: Industry, School, Hospital, Lab
Customized: Customized
Certification: CE, ISO
Structure: Desktop
Customization:
Available

|

diaphragm vane pump

What safety features are typically integrated into diaphragm vacuum pump systems?

Diaphragm vacuum pump systems typically incorporate various safety features to ensure safe operation and protect both the users and the equipment. Here’s a detailed explanation:

1. Overpressure Protection: Diaphragm vacuum pump systems often include overpressure protection mechanisms to prevent excessive pressure buildup. These mechanisms can be in the form of pressure relief valves or pressure sensors that automatically shut off the pump or release excess pressure if it exceeds the predefined limits. Overpressure protection safeguards the system from potential damage and reduces the risk of accidents or equipment failure.

2. Thermal Protection: Thermal protection features are designed to prevent the pump from overheating. Diaphragm pumps can generate heat during operation, especially in continuous or intensive use. Thermal protection mechanisms, such as thermal switches or temperature sensors, monitor the pump’s temperature and automatically shut it down or activate cooling systems if the temperature exceeds safe limits. This helps prevent damage to the pump and reduces the risk of fire or other safety hazards.

3. Leak Detection: Diaphragm vacuum pump systems may incorporate leak detection mechanisms to alert users in case of any air or gas leakage. These mechanisms can include pressure sensors or flow sensors that monitor the system’s integrity. If a leak is detected, visual or audible alarms may be triggered, indicating the need for immediate attention and repair to maintain the system’s efficiency and prevent the release of potentially harmful substances into the environment.

4. Electrical Safety: Diaphragm pump systems have electrical safety features to protect against electrical hazards. This includes measures such as ground fault circuit interrupters (GFCI) or residual current devices (RCD) that detect and interrupt electrical faults, preventing electric shocks or short circuits. Proper grounding and insulation of electrical components are also important safety considerations in diaphragm pump systems.

5. Emergency Stop: Many diaphragm pump systems are equipped with an emergency stop button or switch that allows users to quickly shut down the pump in case of an emergency or hazardous situation. The emergency stop feature provides a convenient and immediate means to halt pump operation, ensuring the safety of the users and preventing further risks or damages.

6. System Monitoring and Alarms: Advanced diaphragm pump systems may incorporate monitoring features that continuously assess the system’s performance and provide real-time feedback. This can include monitoring parameters such as vacuum levels, temperature, pressure, or flow rates. Alarms or visual indicators are often integrated to alert users in case of deviations from normal operating conditions, enabling prompt corrective actions and preventing potential safety issues.

It’s important to note that the specific safety features integrated into diaphragm vacuum pump systems may vary depending on the manufacturer, model, and intended application. Users should carefully review the product documentation and follow the manufacturer’s instructions regarding safety precautions, installation requirements, and maintenance procedures to ensure safe and proper use of the equipment.

In summary, diaphragm vacuum pump systems typically incorporate safety features such as overpressure protection, thermal protection, leak detection, electrical safety measures, emergency stop functionalities, and system monitoring with alarms. These safety features aim to protect users, prevent equipment damage, and ensure the safe and reliable operation of the diaphragm pump system.

diaphragm vane pump

Are there variations in diaphragm vacuum pump designs, and how do they affect performance?

Yes, there are variations in diaphragm vacuum pump designs, and these variations can affect the performance of the pumps. Here’s a detailed explanation:

Diaphragm vacuum pumps are available in different designs and configurations to meet specific application requirements. The design variations can impact several aspects of the pump’s performance, including:

Pump Construction: Diaphragm vacuum pumps can have single or multiple diaphragms. Single diaphragm pumps typically offer a compact and lightweight design, making them suitable for portable applications. Multiple diaphragm pumps, on the other hand, provide higher flow rates and enhanced performance for applications that require greater pumping capacity.

Materials of Construction: Diaphragm pumps can be constructed using various materials, including metals, plastics, and elastomers. The choice of materials affects the pump’s chemical compatibility, resistance to corrosion or abrasion, and overall durability. Selecting the appropriate materials is crucial to ensure reliable pump performance in specific operating conditions.

Valve Design: The valves in diaphragm vacuum pumps play a critical role in controlling the direction of air flow and maintaining efficient pumping. Variations in valve design, such as the type of valves used (e.g., flapper valves, reed valves) and their configuration, can impact the pump’s suction capacity, vacuum level, and overall efficiency.

Sealing Mechanisms: Diaphragm pumps employ various sealing mechanisms to ensure airtight operation and prevent air leakage. The sealing mechanisms can differ in terms of design, materials used, and effectiveness. Well-designed sealing mechanisms are necessary to maintain a consistent vacuum level and prevent loss of suction during operation.

Control Features: Advanced diaphragm vacuum pumps may incorporate control features such as variable speed drives, pressure sensors, or automated systems for monitoring and adjusting pump performance. These control features can improve the pump’s efficiency, optimize energy consumption, and provide greater control over vacuum levels and flow rates.

The specific design variations in diaphragm vacuum pumps are often tailored to meet different application requirements, such as laboratory research, medical devices, or industrial processes. Therefore, it’s essential to consider the intended application and select a pump design that aligns with the desired performance parameters.

In summary, diaphragm vacuum pumps come in various designs and configurations that can impact their performance. Factors such as pump construction, materials of construction, valve design, sealing mechanisms, and control features all contribute to the overall efficiency, reliability, and suitability of the pump for specific applications.

diaphragm vane pump

What is a diaphragm vacuum pump, and how does it operate?

A diaphragm vacuum pump is a type of positive displacement pump used to create vacuum or low-pressure conditions in various applications. Here’s a detailed explanation of its operation:

Overview:

A diaphragm vacuum pump consists of a flexible diaphragm that moves back and forth within a chamber. As the diaphragm flexes, it creates changes in the volume of the chamber, resulting in the suction and expulsion of gas. The diaphragm is typically made of a durable, chemically resistant material such as rubber or elastomer.

Operation:

The operation of a diaphragm vacuum pump typically involves the following steps:

1. Suction Phase: The diaphragm starts in a neutral position. When the pump is powered on, the diaphragm is pulled downward by the negative pressure within the chamber. This expansion of the chamber volume creates suction, drawing gas or vapor into the pump through the inlet valve or port.

2. Compression Phase: Once the diaphragm reaches its maximum downward position, the inlet valve closes to prevent backflow. The diaphragm then starts to move upward, reducing the volume of the chamber. This compression action causes the gas to be expelled through the outlet valve or port.

3. Exhaust Phase: As the diaphragm continues to move upward, the outlet valve closes, and the compressed gas is discharged from the pump. The diaphragm returns to its neutral position, ready for the next suction phase.

Features and Advantages:

Diaphragm vacuum pumps offer several features and advantages that make them suitable for various applications:

No Contamination: Diaphragm pumps are designed to be oil-free and have a sealed pumping chamber. This eliminates the risk of oil contamination of the pumped gas or vapor, making them suitable for applications requiring clean and uncontaminated vacuum conditions, such as laboratory work or medical applications.

Chemical Resistance: The diaphragm is typically made of chemically resistant materials, allowing the pump to handle corrosive or reactive gases without degradation or contamination.

Gentle Operation: The pumping action of diaphragm pumps is gentle and pulsation-free, making them suitable for applications that require precise control or sensitive handling of gases or delicate samples.

Quiet Operation: Diaphragm pumps are known for their quiet operation, reducing noise pollution in the working environment.

Self-Priming: Diaphragm pumps are generally self-priming, meaning they can start and maintain their pumping action without the need for external priming or additional equipment.

Compact and Portable: Diaphragm pumps are often compact and lightweight, allowing for easy installation and portability. They can be used as standalone units or integrated into larger systems.

Applications:

Diaphragm vacuum pumps find applications in various industries and fields, including:

– Laboratory research and analysis

– Medical and healthcare

– Environmental monitoring and analysis

– Vacuum filtration

– Vacuum drying and degassing

– Automotive and manufacturing processes

– Semiconductor and electronics manufacturing

It is important to note that the specific design and operation of diaphragm vacuum pumps may vary across different manufacturers and models. Consulting the manufacturer’s specifications and guidelines is recommended for detailed information on the operation, performance, and suitability of a particular diaphragm pump for a given application.

By utilizing the flexible diaphragm’s movement to create suction and compression, diaphragm vacuum pumps offer reliable and efficient vacuum generation for a wide range of applications.

China Professional Water Circulating Diaphragm Vacuum Pump   vacuum pump electricChina Professional Water Circulating Diaphragm Vacuum Pump   vacuum pump electric
editor by Dream 2024-05-15

China Best Sales Stable Vacuum Pump with Carbon Brush Motor with high quality

Product Description

Product Features:
1. Oilless, maintenance free, long lifetime;
2. Good sealing, small vibration, low noise;
3. Simple installation, high value with competitive price.

Specification:

Model 7121-61-ELA Diaphragm Pump
Body material PP
Flow 0.60 L/min
Rated voltage/DC 12V
Rated power consumption 7W
Max suction height 6 mWg
Max drainage height 10 mwg
Min active voltage 3V
Rated current 0.36A
Port Soft tube with 4mm internal diameter
Anticipated Life (Cycles) above 1000h
Mediums Water, weak acid & alkali etc.

Installation dimension:

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001:2008
Rated Current: 1-4A
Voltage: 12V
Material: PP
Power: Electric
Valve Body Type: Diaphragm
Customization:
Available

|

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum ovens and freeze-drying processes?

Yes, diaphragm vacuum pumps can be used in both vacuum ovens and freeze-drying processes. Here’s a detailed explanation:

Vacuum Ovens: Vacuum ovens are commonly used in various industries and scientific applications for drying, curing, or processing materials under low-pressure conditions. Diaphragm vacuum pumps are well-suited for vacuum oven applications due to their ability to generate and maintain the required vacuum levels. The diaphragm pump’s design, which does not require oil lubrication, makes it ideal for applications where contamination from oil vapors is a concern. The pumps can efficiently remove air and other gases from the oven chamber, creating a controlled low-pressure environment for the drying or curing process.

When selecting a diaphragm vacuum pump for a vacuum oven, several factors should be considered:

Vacuum Level: The diaphragm pump should be capable of achieving the desired vacuum level required for the specific application. Different diaphragm pump models may have different maximum achievable vacuum levels, so it’s important to choose a pump that meets the oven’s vacuum requirements.

Flow Rate: The flow rate of the diaphragm pump should be sufficient to maintain the desired vacuum level within the oven chamber. The pump’s flow rate should be able to handle any gas released during the drying or curing process and compensate for any minor leaks in the system.

Chemical Compatibility: It’s essential to consider the chemical compatibility of the diaphragm pump’s materials with the substances being processed in the vacuum oven. Some diaphragm pumps are designed with chemically resistant materials, allowing them to handle corrosive or reactive gases without degradation or contamination.

Freeze-Drying Processes: Freeze-drying, also known as lyophilization, is a process used to remove moisture from products while preserving their structure and integrity. Diaphragm vacuum pumps can be employed in freeze-drying systems to create the necessary low-pressure environment for sublimation, where ice is directly converted from solid to vapor without passing through a liquid phase.

In freeze-drying processes, diaphragm vacuum pumps play a crucial role in two main stages:

Freezing Stage: The diaphragm pump can be used to evacuate the moisture or solvent vapors released during the freezing step of the freeze-drying process. By removing these vapors, the pump helps maintain a controlled environment during freezing and prevents ice buildup on the product.

Drying Stage: Once the product is frozen, the diaphragm vacuum pump is utilized to create a vacuum within the freeze-drying chamber. This vacuum environment allows the frozen moisture to sublime, transforming it directly from ice to vapor. The diaphragm pump continuously removes the vapor, aiding in the drying process and facilitating efficient moisture removal from the product.

Similar to vacuum oven applications, when choosing a diaphragm vacuum pump for freeze-drying processes, factors such as vacuum level capability, flow rate, and chemical compatibility should be considered. Additionally, the pump should be able to handle the potential condensable vapors generated during the sublimation process.

In summary, diaphragm vacuum pumps are suitable for use in vacuum ovens and freeze-drying processes. They can effectively create and maintain the required low-pressure environments for drying, curing, and sublimation. When selecting a diaphragm pump for these applications, factors such as vacuum level, flow rate, chemical compatibility, and the presence of condensable vapors should be taken into account to ensure optimal performance and successful operation.

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum filtration setups?

Yes, diaphragm vacuum pumps are commonly used in vacuum filtration setups. Here’s a detailed explanation:

Vacuum filtration is a widely used technique in various fields, including laboratory research, pharmaceutical manufacturing, and industrial processes. It involves applying a vacuum to a filter apparatus to facilitate the separation of solids from liquids or gases.

Diaphragm vacuum pumps are well-suited for vacuum filtration setups due to the following reasons:

Oil-Free Operation: Diaphragm pumps operate without the need for oil lubrication. This oil-free operation is particularly advantageous in vacuum filtration, as it eliminates the risk of oil contamination that could interfere with the filtration process or contaminate the filtrate.

Chemical Compatibility: Diaphragm pumps are available in various chemically resistant materials such as PTFE (polytetrafluoroethylene) or other corrosion-resistant polymers. This allows them to handle a wide range of filtration applications involving different chemicals or solvents without the risk of material degradation.

Adjustable Vacuum Levels: Diaphragm vacuum pumps offer adjustable vacuum levels, allowing users to control and optimize the filtration process. The vacuum level can be adjusted based on the specific filtration requirements, such as the nature of the filter medium, the volume of the sample, or the desired filtration rate.

Compact and Portable: Diaphragm vacuum pumps are often compact and lightweight, making them suitable for benchtop or portable filtration setups. Their small footprint and ease of operation make them convenient for use in various laboratory or field applications.

When using diaphragm vacuum pumps in vacuum filtration setups, it’s important to consider the following factors:

Flow Rate: Diaphragm pumps are available in different flow rate capacities. It’s essential to select a pump with an appropriate flow rate to ensure efficient filtration without excessive filtration time or clogging of the filter media.

Compatibility with Filtration Apparatus: Diaphragm pumps should be compatible with the specific filtration apparatus being used, including the filter flask, filter holder, and associated tubing or connectors. Ensuring proper compatibility and airtight connections is crucial for achieving effective vacuum filtration.

In summary, diaphragm vacuum pumps are well-suited for vacuum filtration setups due to their oil-free operation, chemical compatibility, adjustable vacuum levels, and compact design. They offer reliable and efficient performance in a wide range of filtration applications, making them a popular choice in laboratories, pharmaceutical manufacturing, and industrial processes.

diaphragm vane pump

How do diaphragm vacuum pumps compare to other types of vacuum pumps in terms of performance?

When comparing diaphragm vacuum pumps to other types of vacuum pumps, several factors come into play that affect their performance. Here’s a detailed explanation of how diaphragm vacuum pumps compare to other types in terms of performance:

1. Vacuum Level:

Diaphragm vacuum pumps are capable of generating moderate vacuum levels, typically up to about 1 torr or 1 mbar. This makes them suitable for applications that require low to medium vacuum conditions. In comparison, other types of vacuum pumps such as rotary vane pumps or turbo molecular pumps can achieve much higher vacuum levels, extending into the ultra-high vacuum range.

2. Flow Rate:

Diaphragm vacuum pumps offer relatively lower flow rates compared to some other types of pumps. Their flow rates are typically in the range of a few liters per minute. This makes them well-suited for applications that require lower flow rates or when working with small sample sizes. However, if high flow rates are required, other types of pumps like rotary vane pumps or scroll pumps may be more suitable.

3. Contamination and Oil-Free Operation:

One significant advantage of diaphragm vacuum pumps is their oil-free operation. They do not require lubricating oil, which eliminates the risk of oil contamination in the pumped gas or vacuum environment. In comparison, oil-sealed pumps such as rotary vane pumps or oil diffusion pumps use oil as a lubricant and sealing medium, which can introduce oil vapor or particles into the vacuum system. This makes diaphragm pumps preferred in applications that require clean and uncontaminated vacuum conditions.

4. Chemical Resistance:

Diaphragm pumps are often designed with materials that offer excellent chemical resistance. This allows them to handle corrosive or reactive gases without degradation or contamination. In contrast, some other types of pumps may not be compatible with certain aggressive chemicals or may require additional protective measures. Diaphragm pumps are thus advantageous in applications that involve chemical processing or handling of corrosive gases.

5. Noise Level:

Diaphragm vacuum pumps are known for their quiet operation compared to many other types of pumps. The reduced noise level contributes to a more comfortable working environment, making them suitable for applications where noise pollution needs to be minimized, such as laboratories or research facilities.

6. Maintenance and Lifespan:

Diaphragm vacuum pumps generally have relatively simple designs and require minimal maintenance. They do not have wearing parts like vanes or pistons that require regular replacement. This results in lower maintenance costs and longer lifespans compared to some other types of pumps. However, it’s important to note that the diaphragm itself may need periodic replacement due to wear and tear.

7. Cost:

Diaphragm vacuum pumps are typically more cost-effective compared to certain high-performance vacuum pumps such as turbo molecular pumps. They provide a good balance between performance and cost, making them suitable for a wide range of applications that do not require extreme vacuum levels or high flow rates.

It’s important to consider the specific requirements of the application when choosing a vacuum pump. While diaphragm vacuum pumps may have some limitations in terms of vacuum level and flow rate compared to other types, their advantages in areas such as oil-free operation, chemical resistance, low noise, and cost-effectiveness make them a preferred choice in many applications.

China Best Sales Stable Vacuum Pump with Carbon Brush Motor   with high quality China Best Sales Stable Vacuum Pump with Carbon Brush Motor   with high quality
editor by Dream 2024-05-15

China high quality CHINAMFG 1 Inch 2HP Gaosline Water Pump with CE Certificates wholesaler

Product Description

Product Description

Product Model  WB10CX-1E40F-5D
Engine Model  1E40F-5D
Engine type  Air-cooled, 2-stroke, single cylinder gasoline
Engine power  1.25kw/6500rpm
Engine Displacement  43CC
Pump Lift  26mm
Suction Distance  7m
Max. Capacity  150L/min
Fuel Tank capacity  1.0L
Size of product  300x260x360mm
Net Weight  6.5kg.

ZHangZhoug CHINAMFG Power Machinery Co., Ltd. is a well-known supplier of customized outboard motors. The company is located in Xihu (West Lake) Dis. District, HangZhou City, ZHangZhoug Province–Xihu (West Lake) Dis.hai, a rising commercial city along the coast. Our factory specializes in the production of outboard motors, garden machinery, agricultural machinery, and plastic products. It is a private enterprise integrating technology, industry and trade. With the concept of “capital as the link, high technology as the guide, people-oriented, market as the carrier”, our company continues to develop and grow, and strives to be the best. In order to establish a corporate culture based on “performance-oriented, learning-oriented organization” and centering on the corporate vision of “creating a world garden and creating a world brand”, we adhere to “excellent quality, reliable reputation, and famous brand” and actively pursue sustainable development. In the new century, CHINAMFG people will continue to strive for self-improvement, build CHINAMFG brand with high quality and high standards, and participate in international competition. All staff of CHINAMFG warmly welcome your visit, call or inquiry. Let us join hands to create a better future.

FAQ

Q1:Do you provide OEM service? Can we put our own logo on the machine?

A1:Yes, we offer OEM service. We can customized the logo, carton design, user manual, etc for you if you order a large quantity.

 

Q2: Are you a factory or trading company?

A2: We are a factory, which has been specializing in the production of outboard motors and garden machinery for almost 20 years.

 

Q3: Can I get a sample to test the quality?
A3: Yes, you can request for a sample, but we will charge the sample fee. When you place official bulk order, we can refund the fee to you.

 

Q4: What’s the lead time?
A4: For the products in stock, we can send out the goods within 72 hours, and the goods out of stock will usually be completed within 15-30 days after receiving your advance payment. If you need a large quantity, you need to negotiate with our sales.

 

Q5: What is your terms of delivery?
A5: FOB, CFR, CIF, DDU.

Q6: Do you test all your goods before delivery?
A6: Yes, we have 100% test before delivery.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Aluminum
Structure: Diaphragm Pump
Assembly: Water Pump
Samples:
US$ 80/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

diaphragm vane pump

What is the energy consumption and efficiency of diaphragm vacuum pumps?

The energy consumption and efficiency of diaphragm vacuum pumps can vary depending on factors such as the pump design, operating conditions, and specific application requirements. Here’s a detailed explanation:

1. Energy Consumption: Diaphragm vacuum pumps generally have lower energy consumption compared to other types of vacuum pumps, such as rotary vane or oil-sealed pumps. This is primarily because diaphragm pumps operate without oil lubrication, which reduces friction and power requirements. The energy consumption of diaphragm pumps is typically measured in terms of electrical power input, expressed in watts (W) or kilowatts (kW).

The energy consumption of a diaphragm vacuum pump can be influenced by several factors, including:

Pump Size and Capacity: Larger diaphragm pumps designed for higher flow rates or vacuum levels may consume more energy compared to smaller pumps with lower capacities. The power requirements increase as the pump has to move larger volumes of gas or create stronger vacuums.

Operating Pressure: The energy consumption of a diaphragm pump can vary depending on the required operating pressure. Higher vacuum levels typically require more energy to be maintained due to increased resistance in evacuating the gas or air from the system.

Process Conditions: The energy consumption of a diaphragm pump may be affected by process-specific factors, such as the presence of particulate matter or the need for continuous operation. These factors can influence the pump’s efficiency and overall power requirements.

2. Efficiency: The efficiency of a diaphragm vacuum pump refers to its ability to convert electrical power input into useful pumping work. It is typically expressed as a percentage and can be calculated by dividing the pump’s useful output power (in the form of vacuum or flow) by the electrical power input.

The efficiency of diaphragm vacuum pumps can be influenced by various factors:

Pump Design: The design and construction of the diaphragm pump can impact its efficiency. Well-engineered pumps with optimized diaphragm materials and valve systems can achieve higher efficiencies by reducing internal losses and maximizing gas compression and evacuation.

Motor Efficiency: The efficiency of the electric motor driving the diaphragm pump can affect the overall efficiency of the system. Higher motor efficiencies result in more effective power utilization and improved pump performance.

System Optimization: Proper system design, including appropriate sizing, correct piping arrangements, and minimizing pressure losses or leaks, can contribute to improved overall efficiency. Optimizing the system configuration ensures that the pump operates under favorable conditions, maximizing its efficiency.

Operating Conditions: The operating conditions, such as the required vacuum level or flow rate, can impact the efficiency of the diaphragm pump. Operating the pump within its specified range and avoiding excessive demands can help maintain higher efficiency levels.

It’s important to note that specific energy consumption and efficiency values can vary among different diaphragm vacuum pump models and manufacturers. When selecting a diaphragm pump for a particular application, it’s advisable to review the manufacturer’s specifications and performance data, including energy consumption and efficiency information, to make an informed decision.

In summary, diaphragm vacuum pumps generally have lower energy consumption compared to other vacuum pump types. The energy consumption and efficiency of diaphragm pumps can be influenced by factors such as pump size, operating pressure, process conditions, pump design, motor efficiency, system optimization, and operating conditions. Understanding the specific energy consumption and efficiency characteristics of a diaphragm vacuum pump is important for selecting the appropriate pump for a given application and optimizing energy usage.

diaphragm vane pump

Are there variations in diaphragm vacuum pump designs, and how do they affect performance?

Yes, there are variations in diaphragm vacuum pump designs, and these variations can affect the performance of the pumps. Here’s a detailed explanation:

Diaphragm vacuum pumps are available in different designs and configurations to meet specific application requirements. The design variations can impact several aspects of the pump’s performance, including:

Pump Construction: Diaphragm vacuum pumps can have single or multiple diaphragms. Single diaphragm pumps typically offer a compact and lightweight design, making them suitable for portable applications. Multiple diaphragm pumps, on the other hand, provide higher flow rates and enhanced performance for applications that require greater pumping capacity.

Materials of Construction: Diaphragm pumps can be constructed using various materials, including metals, plastics, and elastomers. The choice of materials affects the pump’s chemical compatibility, resistance to corrosion or abrasion, and overall durability. Selecting the appropriate materials is crucial to ensure reliable pump performance in specific operating conditions.

Valve Design: The valves in diaphragm vacuum pumps play a critical role in controlling the direction of air flow and maintaining efficient pumping. Variations in valve design, such as the type of valves used (e.g., flapper valves, reed valves) and their configuration, can impact the pump’s suction capacity, vacuum level, and overall efficiency.

Sealing Mechanisms: Diaphragm pumps employ various sealing mechanisms to ensure airtight operation and prevent air leakage. The sealing mechanisms can differ in terms of design, materials used, and effectiveness. Well-designed sealing mechanisms are necessary to maintain a consistent vacuum level and prevent loss of suction during operation.

Control Features: Advanced diaphragm vacuum pumps may incorporate control features such as variable speed drives, pressure sensors, or automated systems for monitoring and adjusting pump performance. These control features can improve the pump’s efficiency, optimize energy consumption, and provide greater control over vacuum levels and flow rates.

The specific design variations in diaphragm vacuum pumps are often tailored to meet different application requirements, such as laboratory research, medical devices, or industrial processes. Therefore, it’s essential to consider the intended application and select a pump design that aligns with the desired performance parameters.

In summary, diaphragm vacuum pumps come in various designs and configurations that can impact their performance. Factors such as pump construction, materials of construction, valve design, sealing mechanisms, and control features all contribute to the overall efficiency, reliability, and suitability of the pump for specific applications.

diaphragm vane pump

Can diaphragm vacuum pumps handle both corrosive and non-corrosive gases?

Diaphragm vacuum pumps have the capability to handle both corrosive and non-corrosive gases, depending on their design and construction. Here’s a detailed explanation:

Diaphragm pumps are often designed with materials that offer excellent chemical resistance. The wetted parts of the pump, including the diaphragm, valves, and other components that come into contact with the pumped gas, are typically made of chemically resistant materials such as rubber or elastomer. This allows diaphragm vacuum pumps to handle corrosive gases without degradation or contamination.

When used with corrosive gases, it’s essential to ensure that the diaphragm pump is specifically designed and constructed for compatibility with those gases. Different types of diaphragm materials may be available to accommodate various corrosive gases, such as fluorocarbon-based diaphragms for highly aggressive chemicals.

Furthermore, diaphragm pumps can also handle non-corrosive gases effectively. The same chemical resistance that allows them to handle corrosive gases also makes them suitable for non-corrosive gases. Whether it’s vacuum filtration, vacuum drying, degassing, or other applications involving non-corrosive gases, diaphragm pumps can provide reliable and efficient vacuum generation.

It’s important to note that while diaphragm vacuum pumps can handle a wide range of gases, there may be limitations in terms of compatibility with extremely aggressive chemicals or gases at high temperatures or pressures. In such cases, it’s crucial to consult the pump manufacturer’s specifications and guidelines to ensure that the pump is suitable for the specific gas or application.

Overall, diaphragm vacuum pumps offer the advantage of handling both corrosive and non-corrosive gases, making them versatile for various laboratory and industrial applications that involve different types of gases.

China high quality CHINAMFG 1 Inch 2HP Gaosline Water Pump with CE Certificates   wholesaler China high quality CHINAMFG 1 Inch 2HP Gaosline Water Pump with CE Certificates   wholesaler
editor by Dream 2024-05-15

China manufacturer Boosters Roots Rotary Van Piston Pump Replace 5.5kw Single Double Stage Water Ring Vacuum Pump a/c vacuum pump

Product Description

2BV liquid ring vacuum pump is single-stage monobloc design vacuum pump. It offers Space-saving installation, compared to conventional pumps, the 2BV’s monoblock design delivers the benefits of a simple, compact and economical installation. Since the pump and motor are integral and self supporting, there is no need for additional base plates, couplings or guards, which add to the cost, complexity and overall size of the installation. With CE and Atex certificate, it is an ideal product for much different application including Plastics Industry, Medical Industry, Chemical Industry, Processing Industry, Food and Beverage Industry and other General Industry.

We offer same outline dimensions for bolt-on replacement and equivalent performances with original 2BV liquid ring vacuum pump.

ITEM

UNIT

Quantity

Supply Ability

per month

2,000set

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 1 Year
Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Samples:
US$ 10000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Vacuum Pump

Basic knowledge of vacuum pump

A vacuum pump is a device that draws gas molecules from a sealed volume and maintains a partial vacuum. Its main job is to create a relative vacuum within a given volume or volumes. There are many types of vacuum pumps. This article will describe how they work, their types, and their applications.

How it works

A vacuum pump is a mechanical device that removes gas from a system by applying it to a higher pressure than the surrounding atmosphere. The working principle of the vacuum pump is based on the principle of gas transfer and entrapment. Vacuum pumps can be classified according to their vacuum level and the number of molecules that can be removed per cubic centimeter of space. In medium to high vacuum, viscous flow occurs when gas molecules collide with each other. Increasing the vacuum causes molecular or transitional flow.
A vacuum pump has several components that make it a versatile tool. One of the main components is the motor, which consists of a rotor and a stator. The rotor and stator contain coils that generate a magnetic field when excited. Both parts must be mounted on a base that supports the weight of the pump. There is also an oil drain that circulates oil throughout the system for lubrication and cooling purposes.
Another type of vacuum pump is the liquid ring vacuum pump. It works by positioning the impeller above or below the blades. Liquid ring pumps can also adjust the speed of the impeller. However, if you plan to use this type of pump, it is advisable to consult a specialist.
Vacuum pumps work by moving gas molecules to areas of higher or lower pressure. As the pressure decreases, the removal of the molecules becomes more difficult. Industrial vacuum systems require pumps capable of operating in the 1 to 10-6 Torr range.

Type

There are different types of vacuum pumps. They are used in many different applications, such as laboratories. The main purpose of these pumps is to remove air or gas molecules from the vacuum chamber. Different types of pumps use different techniques to achieve this. Some types of pumps use positive displacement, while others use liquid ring, molecular transfer, and entrapment techniques.
Some of these pumps are used in industrial processes, including making vacuum tubes, CRTs, electric lights, and semiconductor processing. They are also used in motor vehicles to power hydraulic components and aircraft. The gyroscope is usually controlled by these pumps. In some cases, they are also used in medical settings.
How a vacuum pump works depends on the type of gas being pumped. There are three main types: positive displacement, negative displacement, and momentum transfer. Depending on the type of lubrication, these principles can be further divided into different types of pumps. For example, dry vacuum pumps are less sensitive to gases and vapors.
Another type of vacuum pump is called a rotary vane pump. This type of pump has two main components, the rotor and the vacuum chamber. These pumps work by rotating moving parts against the pump casing. The mating surfaces of rotary pumps are designed with very small clearances to prevent fluid leakage to the low pressure side. They are suitable for vacuum applications requiring low pulsation and high continuous flow. However, they are not suitable for use with grinding media.
There are many types of vacuum pumps and it is important to choose the right one for your application. The type of pump depends on the needs and purpose of the system. The larger ones can work continuously, and the smaller ones are more suitable for intermittent use.
Vacuum Pump

Apply

Vacuum pumps are used in a variety of industrial and scientific processes. For example, they are used in the production of vacuum tubes, CRTs, and electric lamps. They are also used in semiconductor processing. Vacuum pumps are also used as mechanical supports for other equipment. For example, there may be multiple vacuum pumps on the engine of a motor vehicle that powers the hydraulic components of an aircraft. In addition, they are often used in fusion research.
The most common type of vacuum pump used in the laboratory is the rotary vane pump. It works by directing airflow through a series of rotating blades in a circular housing. As the blades pass through the casing, they remove gas from the cavity and create a vacuum. Rotary pumps are usually single or double-stage and can handle pressures between 10 and 6 bar. It also has a high pumping speed.
Vacuum pumps are also used to fabricate solar cells on wafers. This involves a range of processes including doping, diffusion, dry etching, plasma-enhanced chemical vapor deposition, and bulk powder generation. These applications depend on the type of vacuum pump used in the process, and the vacuum pump chosen should be designed for the environment.
While there are several types of vacuum pumps available, their basic working principles remain the same. Each has different functions and capacities, depending on the type of vacuum. Generally divided into positive displacement pump, rotary vane pump, liquid ring pump, and molecular delivery pump.

Maintenance

The party responsible for general maintenance and repairs is the Principal Investigator (PI). Agknxs must be followed and approved by the PI and other relevant laboratory personnel. The Agknx provides guidelines for routine maintenance of vacuum pump equipment. Agknxs are not intended to replace detailed routine inspections of vacuum pump equipment, which should be performed by certified/qualified service personnel. If the device fails, the user should contact PI or RP for assistance.
First, check the vacuum pump for any loose parts. Make sure the inlet and outlet pressure gauges are open. When the proper pressure is shown, open the gate valve. Also, check the vacuum pump head and flow. Flow and head should be within the range indicated on the label. Bearing temperature should be within 35°F and maximum temperature should not exceed 80°F. The vacuum pump bushing should be replaced when it is severely worn.
If the vacuum pump has experienced several abnormal operating conditions, a performance test should be performed. Results should be compared to reference values ​​to identify abnormalities. To avoid premature pump failure, a systematic approach to predictive maintenance is essential. This is a relatively new area in the semiconductor industry, but leading semiconductor companies and major vacuum pump suppliers have yet to develop a consistent approach.
A simplified pump-down test method is proposed to evaluate the performance of vacuum pumps. The method includes simulated aeration field tests and four pump performance indicators. Performance metrics are evaluated under gas-loaded, idle, and gas-load-dependent test conditions.
Vacuum Pump

Cost

The total cost of a vacuum pump consists of two main components: the initial investment and ongoing maintenance costs. The latter is the most expensive component, as it consumes about four to five times the initial investment. Therefore, choosing a more energy-efficient model is a good way to reduce the total system cost and payback period.
The initial cost of a vacuum pump is about $786. Oil-lubricated rotary vane pumps are the cheapest, while oil-free rotary vane pumps are slightly more expensive. Non-contact pumps also cost slightly more. The cost of a vacuum pump is not high, but it is a factor that needs careful consideration.
When choosing a vacuum pump, it is important to consider the type of gas being pumped. Some pumps are only suitable for pumping air, while others are designed to pump helium. Oil-free air has a different pumping rate profile than air. Therefore, you need to consider the characteristics of the medium to ensure that the pump meets your requirements. The cost of a vacuum pump can be much higher than the purchase price, as the daily running and maintenance costs can be much higher.
Lubricated vacuum pumps tend to be more durable and less expensive, but they may require more maintenance. Maintenance costs will depend on the type of gas that needs to be pumped. Lighter gases need to be pumped slowly, while heavier gases need to be pumped faster. The maintenance level of a vacuum pump also depends on how often it needs to be lubricated.
Diaphragm vacuum pumps require regular maintenance and oil changes. The oil in the diaphragm pump should be changed every 3000 hours of use. The pump is also resistant to chemicals and corrosion. Therefore, it can be used in acidic and viscous products.

China manufacturer Boosters Roots Rotary Van Piston Pump Replace 5.5kw Single Double Stage Water Ring Vacuum Pump   a/c vacuum pump		China manufacturer Boosters Roots Rotary Van Piston Pump Replace 5.5kw Single Double Stage Water Ring Vacuum Pump   a/c vacuum pump
editor by Dream 2024-05-14

China wholesaler GWSP1000 CHINAMFG vortex pump equipment industrial Portable Oilless Dry oil-free electric air scroll vacuum pump with Great quality

Product Description

 

Product Description

GWSP Oil free Scroll Vacuum Pump

Working principle:
GWSP oil free scroll vacuum pump is constructed with pump head assembly, crank pin assembly, bracket assembly, air flush assembly,and exhaust valve assembly.Two spiral cylinders, 1 offset and orbiting against the other fixed with an offset of 180° to form several crescent-shaped pockets of different sizes. By means of an eccentric drive, the orbiting scroll is made to orbit about the fixed scroll, reducing the volume of the pockets and compressing gas from outside towards the inside thereby pumping the gas from vacuum chamber.

Basic informations:
1) Model: GWSP1000 Oil free scroll vacuum pump
2) Ultimate vacuum pressure: 1 Pa/0.01 mbar (abs.)
3) Max suction capacity: 50Hz-16.6L/s 60Hz-20.0L/s

Safety Precautions:
The GWSP series oil free scroll vacuum pumps are suitable for clean processes only.
Do not pump toxic, explosive, flammable or corrosive substances or substances which contain chemicals, solvents or particles.GEOWELL will not perform maintenance work on pumps which have used special gases or other hazardous substances.
Be sure the inlet gas temperature must be lower than 122 °F.
 

Technical Specifications

 

  Model GWSP40 GWSP75 GWSP150 GWSP300 GWSP600 GWSP1000
  Pumping Speed 50Hz l/s 0.5 1.0  2.0  4.3 8.7 16.6
m3/h 1.8 3.6 7.2 15.5 31.3 59.8
cfm 1.1 2.1 4.3 9.3 18.7 35.8
60Hz l/s 0.6 1.2 2.4 5.1 10.4 20.0 
m3/h 2.2 4.3 8.6 18.3 37.4 71.6
cfm 1.3 2.5 5.1 10.9 22.3 42.8
  Ultimate Pressure Torr   ≤1.1*10-1   ≤6.0*10-2   ≤4.5*10-2   ≤1.9*10-2   ≤7.5*10-3   ≤7.5*10-3
psi   ≤2.2*10-3   ≤1.2*10-3   ≤9.0*10-4   ≤3.8*10-4   ≤1.5*10-4   ≤1.5*10-4
Pa   ≤15   ≤8   ≤6   ≤2.6   ≤1   ≤1
mbar   ≤1.5*10-1   ≤8.0*10-2   ≤6.0*10-2   ≤2.6*10-2   ≤1.0*10-2   ≤1.0*10-2
  Noise Level dB(A)   ≤54   ≤57   ≤57   ≤60   ≤61   ≤65
  Leakage mbar·l/s 1*10-7
  Max. Inlet/Exhaust Pressure MPa 0.1 / 0.13
  Ambient Operation Temp. ºF 41~104
  Motor 1 phase Power kW 0.25 0.55 0.55 0.55 0.75
Voltage V   110~115 (60Hz),200~230 (50Hz)
Speed rpm 1425(50Hz),1725(60Hz)
Plug   North America, Europe, UK/Ireland, India
  Motor 3 phase Power kW 0.55 0.55 0.55 0.75 1.5
Voltage V 200~230 or 380~415 (50Hz),200~230 or 460 (60Hz)
Speed rpm      1425 (50Hz),1725 (60Hz)
  Inlet/Exhaust Flange   KF25/KF16 KF40/KF16 KF40/KF16*2
  Dimensions 1 phase mm 326*212*253 450*260*296 455*260*296 493*297*334 538*315*348
3 phase mm 450*260*296 455*260*296 493*297*334 538*315*348 576*450*402
  Net Weight 1 phase kg 15 21 22 29 36
3 phase kg 20 21 28 31 54
  Cooling Type   Air cooled
  Others   With air flush

Features & Benefits

 

No oil clean vacuum.
No oil back-diffusion, no oil mist exhaust, provide clean vacuum environment
Wide product lineup.
Pumping speed covers 3~60 m3 /h, limited vacuum level 1~8 Pa
Suitable for all type of power supply around the world.
110/220/380/460V, 50/60Hz for choose
Low vibration, low noise.
57~65 dB(A), smooth operation
High efficiency, ease of maintenance.
No water cooled, no oil lubricated, no daily maintenance

 

 

 

Quality Control

CMM inspection system assures
fixed tolarance on dimension&shape

Pump Testing

Applications

Semiconductor industry.stry

Vacuum sputtering machine.

IC plasma cleaning machine.

IC plasma polishing machine.

IC packaging machine.

IC transmission chamber.

Photoelectric industry.
LED vacuum annealing furnace.
Load lock/transfer chambers.
Glove box.
LED packaging machine.
Liquid crystal injection and packaging.

Material industry.
Vacuum annealing furnace.
Vacuum diffusion oven.
3D metal printing.
Single crystal growth furnace.
Microwave cleaning and microwave drying machine.
E-beam/Laser melting.
Vacuum degassing.
Vacuum gas substitution.

Vacuum equipment.

Oil free ultrahigh vacuum unit.
Oil free vacuum unit.

 

Related Products

GWT40 Foreline Filter
Performance: Filter out the dust particles contained in the intake gas.
Application: Vacuum coating, food and drug processing, ceramic and glass manufacturing, vacuum CHINAMFG and vacuum packaging systems.

GWS16 Exhaust Silencer
Performance: Reduce exhaust noise from oil-free vacuum systems.
Application: Installation of oil free scroll vacuum pumps requires a quiet vacuum system.

GWMMK1000 Major Maintenance Kit
Performance: Prolong the service life of the product.
Application: For the major maintenance of oil free scroll vacuum pump GWSP1000.

GWTSK1000 Tip Seal Kit
Performance: Prolong the service life of the product.
Application: For the scheduled maintenance of oil free scroll vacuum pump GWSP1000.

 

Company Profile

GEOWELL VACUUM CO.,LTD. is a HI-TECH enterprise in China dedicating in manufacturing, research and development, marketing of oil free scroll vacuum pumps and vacuum compressors since 2002. GEOWELL has been providing users and partners with premium quality products that are efficient and dependable, GEOWELL believe the integration of high performance and high reliability product and service will bring the highest value to both our customers and ourselves.

FAQ

Q: How long can I get the feedback after we sent the inquiry?
A: We will reply you within 12 hours in working day.
Q: Are you direct manufacturer?
A: Yes, we are direct manufacturer with factory and international department; we manufacture and sell all our products by ourselves.
Q: When can you delivery the product to us?
A: Since we are a factory with large warehouse, we have abundant products in store, so we can delivery within 7 days after get your deposit.
Q: Can I add logo to the products?
A: Of course, but we usually have quantity requirement. You can contact with us for details.
Q: How to guarantee the quality and after sales service of your products?
A: We conduct strict detection during production from raw material come in to product delivering shipment. Every product must go through 4 steps inspection from casting, machining, assembling, and performance testing within our factory before shipment, also intact packaging test are insured.
Q: What is your warranty term?
A: There is a 12 months warranty for our export products from the date of shipment. If warranty has run out, our customer should pay for the replacement part.
Q: Is the sample available?
A: Yes, usually we send our samples by Fedex, DHL, TNT, UPS, EMS, SF, Depon, it will take around 3 to 4 days for our customer receive them, but customer will charge all cost related to the samples, such as sample cost and air freight. We will refund our customer the sample cost after receiving the order.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Scroll Pump
Exhauster Method: a Pair of Vortex Plates
Vacuum Degree: Low Vacuum
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Furnaces?

Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:

Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.

Here are some key points regarding the use of vacuum pumps in vacuum furnaces:

1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.

2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.

3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.

4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.

5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.

6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.

7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.

8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.

Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.

vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

What Are the Primary Applications of Vacuum Pumps?

Vacuum pumps have a wide range of applications across various industries. Here’s a detailed explanation:

1. Industrial Processes:

Vacuum pumps play a vital role in numerous industrial processes, including:

– Vacuum Distillation: Vacuum pumps are used in distillation processes to lower the boiling points of substances, enabling separation and purification of various chemicals and compounds.

– Vacuum Drying: Vacuum pumps aid in drying processes by creating a low-pressure environment, which accelerates moisture removal from materials without excessive heat.

– Vacuum Packaging: Vacuum pumps are used in the food industry to remove air from packaging containers, prolonging the shelf life of perishable goods by reducing oxygen exposure.

– Vacuum Filtration: Filtration processes can benefit from vacuum pumps to enhance filtration rates by applying suction, facilitating faster separation of solids and liquids.

2. Laboratory and Research:

Vacuum pumps are extensively used in laboratories and research facilities for various applications:

– Vacuum Chambers: Vacuum pumps create controlled low-pressure environments within chambers for conducting experiments, testing materials, or simulating specific conditions.

– Mass Spectrometry: Mass spectrometers often utilize vacuum pumps to create the necessary vacuum conditions for ionization and analysis of samples.

– Freeze Drying: Vacuum pumps enable freeze-drying processes, where samples are frozen and then subjected to a vacuum, allowing the frozen water to sublimate directly from solid to vapor state.

– Electron Microscopy: Vacuum pumps are essential for electron microscopy techniques, providing the necessary vacuum environment for high-resolution imaging of samples.

3. Semiconductor and Electronics Industries:

High vacuum pumps are critical in the semiconductor and electronics industries for manufacturing and testing processes:

– Semiconductor Fabrication: Vacuum pumps are used in various stages of chip manufacturing, including deposition, etching, and ion implantation processes.

– Thin Film Deposition: Vacuum pumps create the required vacuum conditions for depositing thin films of materials onto substrates, as done in the production of solar panels, optical coatings, and electronic components.

– Leak Detection: Vacuum pumps are utilized in leak testing applications to detect and locate leaks in electronic components, systems, or pipelines.

4. Medical and Healthcare:

Vacuum pumps have several applications in the medical and healthcare sectors:

– Vacuum Assisted Wound Closure: Vacuum pumps are used in negative pressure wound therapy (NPWT), where they create a controlled vacuum environment to promote wound healing and removal of excess fluids.

– Laboratory Equipment: Vacuum pumps are essential in medical and scientific equipment such as vacuum ovens, freeze dryers, and centrifugal concentrators.

– Anesthesia and Medical Suction: Vacuum pumps are utilized in anesthesia machines and medical suction devices to create suction and remove fluids or gases from the patient’s body.

5. HVAC and Refrigeration:

Vacuum pumps are employed in the HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries:

– Refrigeration and Air Conditioning Systems: Vacuum pumps are used during system installation, maintenance, and repair to evacuate moisture and air from refrigeration and air conditioning systems, ensuring efficient operation.

– Vacuum Insulation Panels: Vacuum pumps are utilized in the manufacturing of vacuum insulation panels, which offer superior insulation properties for buildings and appliances.

6. Power Generation:

Vacuum pumps play a role in power generation applications:

– Steam Condenser Systems: Vacuum pumps are used in power plants to remove non-condensable gases from steam condenser systems, improving thermal efficiency.

– Gas Capture: Vacuum pumps are utilized to capture and remove gases, such as hydrogen or helium, in nuclear power plants, research reactors, or particle accelerators.

These are just a few examples of the primary applications of vacuum pumps. The versatility and wide range of vacuum pump types make them essential in numerous industries, contributing to various manufacturing processes, research endeavors, and technological advancements.

China wholesaler GWSP1000 CHINAMFG vortex pump equipment industrial Portable Oilless Dry oil-free electric air scroll vacuum pump   with Great quality China wholesaler GWSP1000 CHINAMFG vortex pump equipment industrial Portable Oilless Dry oil-free electric air scroll vacuum pump   with Great quality
editor by Dream 2024-05-14

China Hot selling CHINAMFG Laboratory Equipment 20 L/Min Single Head Diaphragm Vacuum Pump vacuum pump oil near me

Product Description

GM-0.33A New Product Single Head Diaphragm Vacuum Pump

GM0.33A diaphragm vacuum pump has features of more advanced design, higher efficiency, longer operating life.It is an all new product engaging in the  new and high technology.It is mainly used in medicinal products analysis,tenuously chemical engineering, biochemical pharmacy,food examination, investigating and solving criminal case,etc. It is an ideal product used with the highaccuracy chromatogram apparatus, HPLC solvent filter apparatus, and it is the essential equipment in the laboratory.

The body of GM-0.33A diaphragm vacuum pump is made of aluminum alloy through die casting. 
It is antiseptic, sprayed, agile and beautiful. It has the features of higher antisepsis, wider working range. It can meet requirements of all kinds of working environments.
 

Speed of Evacuation  20 L/Min Pump Head 1
Ultimate Pressure ≥0.08MPa Voltage Rating 230VAC, 50Hz
Vacuum 200mbar Noise Level(dB) <50
Dimensions (L X B X H) 215×120×235mm Temp of the body <55 ºC
Motor Power(w) 160 Weight (Kg) 7.5
Inlet (mm) φ6 Diaphragm NBR
Outlet (mm) Silencer Valves NBR
Working Temp(ºC) 7-40    

 

BIOBASE GROUP CHINA

Established in 1999

Leading professional manufacturer of laboratory and medical products with high quality and competitive price,

Specializing in: 

*air protection products

*cold chain products

*analytical instruments

*most of lab and medical products

*laboratory furniture,laboratory and  clean room construction

 

1200employees in China and abroad offices.

 

Our mission is to enable our customers to make the world healthier,cleanerand safer.

BIOBASE group invests in science and technology researches,aims to keep improving products 

performance and quality as well as develops new products to meet customers’wide requirement.

We satisfy our customers by offering comprehensive support,purchase convenience and we are ready to 

serve more and more BIOBASE users.

BIOBASE group,serving global distributors and its loyal end users,is becoming one of the most 

important scientific services supplier.

Website: biobase   biobase     

 BIOBASE Group is your best choice for Partner.

Contact Us

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Reciprocating Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Customization:
Available

|

diaphragm vane pump

What safety features are typically integrated into diaphragm vacuum pump systems?

Diaphragm vacuum pump systems typically incorporate various safety features to ensure safe operation and protect both the users and the equipment. Here’s a detailed explanation:

1. Overpressure Protection: Diaphragm vacuum pump systems often include overpressure protection mechanisms to prevent excessive pressure buildup. These mechanisms can be in the form of pressure relief valves or pressure sensors that automatically shut off the pump or release excess pressure if it exceeds the predefined limits. Overpressure protection safeguards the system from potential damage and reduces the risk of accidents or equipment failure.

2. Thermal Protection: Thermal protection features are designed to prevent the pump from overheating. Diaphragm pumps can generate heat during operation, especially in continuous or intensive use. Thermal protection mechanisms, such as thermal switches or temperature sensors, monitor the pump’s temperature and automatically shut it down or activate cooling systems if the temperature exceeds safe limits. This helps prevent damage to the pump and reduces the risk of fire or other safety hazards.

3. Leak Detection: Diaphragm vacuum pump systems may incorporate leak detection mechanisms to alert users in case of any air or gas leakage. These mechanisms can include pressure sensors or flow sensors that monitor the system’s integrity. If a leak is detected, visual or audible alarms may be triggered, indicating the need for immediate attention and repair to maintain the system’s efficiency and prevent the release of potentially harmful substances into the environment.

4. Electrical Safety: Diaphragm pump systems have electrical safety features to protect against electrical hazards. This includes measures such as ground fault circuit interrupters (GFCI) or residual current devices (RCD) that detect and interrupt electrical faults, preventing electric shocks or short circuits. Proper grounding and insulation of electrical components are also important safety considerations in diaphragm pump systems.

5. Emergency Stop: Many diaphragm pump systems are equipped with an emergency stop button or switch that allows users to quickly shut down the pump in case of an emergency or hazardous situation. The emergency stop feature provides a convenient and immediate means to halt pump operation, ensuring the safety of the users and preventing further risks or damages.

6. System Monitoring and Alarms: Advanced diaphragm pump systems may incorporate monitoring features that continuously assess the system’s performance and provide real-time feedback. This can include monitoring parameters such as vacuum levels, temperature, pressure, or flow rates. Alarms or visual indicators are often integrated to alert users in case of deviations from normal operating conditions, enabling prompt corrective actions and preventing potential safety issues.

It’s important to note that the specific safety features integrated into diaphragm vacuum pump systems may vary depending on the manufacturer, model, and intended application. Users should carefully review the product documentation and follow the manufacturer’s instructions regarding safety precautions, installation requirements, and maintenance procedures to ensure safe and proper use of the equipment.

In summary, diaphragm vacuum pump systems typically incorporate safety features such as overpressure protection, thermal protection, leak detection, electrical safety measures, emergency stop functionalities, and system monitoring with alarms. These safety features aim to protect users, prevent equipment damage, and ensure the safe and reliable operation of the diaphragm pump system.

diaphragm vane pump

What is the noise level produced by diaphragm vacuum pumps during operation?

The noise level produced by diaphragm vacuum pumps during operation can vary depending on factors such as pump design, size, and operating conditions. Here’s a detailed explanation:

Diaphragm vacuum pumps are generally known for their relatively quiet operation compared to other types of vacuum pumps. The noise level produced by diaphragm pumps is typically lower than that of oil-sealed rotary vane pumps or piston pumps.

The noise level is influenced by various factors, including:

Pump Design: The design of the diaphragm pump can affect the noise level. Some pumps are specifically engineered to minimize noise by incorporating features such as noise-reducing materials, vibration dampening mechanisms, or sound insulation.

Pump Size and Power: Larger diaphragm pumps may generate more noise compared to smaller ones due to increased air displacement and higher power requirements. It’s important to consider the specific size and power rating of the pump when evaluating its noise level.

Operating Conditions: The noise level can also be influenced by the operating conditions of the diaphragm pump. Factors such as speed, temperature, and the presence of vibrations or resonances in the system can impact the overall noise output.

While diaphragm vacuum pumps are generally considered to have low noise levels, it’s important to note that individual pump models may have different noise specifications. Manufacturers often provide noise level data in the pump’s technical documentation, which can help in selecting a pump that meets specific noise requirements.

Additionally, it’s worth considering noise reduction measures such as using vibration isolation pads, enclosing the pump in a soundproof housing, or employing remote mounting techniques to further minimize any noise generated by the pump.

In summary, diaphragm vacuum pumps are known for their relatively quiet operation compared to other types of vacuum pumps. However, the actual noise level produced can vary depending on factors such as pump design, size, and operating conditions. Consulting the manufacturer’s specifications and implementing noise reduction measures can help ensure a suitable noise level for the intended application.

diaphragm vane pump

What is a diaphragm vacuum pump, and how does it operate?

A diaphragm vacuum pump is a type of positive displacement pump used to create vacuum or low-pressure conditions in various applications. Here’s a detailed explanation of its operation:

Overview:

A diaphragm vacuum pump consists of a flexible diaphragm that moves back and forth within a chamber. As the diaphragm flexes, it creates changes in the volume of the chamber, resulting in the suction and expulsion of gas. The diaphragm is typically made of a durable, chemically resistant material such as rubber or elastomer.

Operation:

The operation of a diaphragm vacuum pump typically involves the following steps:

1. Suction Phase: The diaphragm starts in a neutral position. When the pump is powered on, the diaphragm is pulled downward by the negative pressure within the chamber. This expansion of the chamber volume creates suction, drawing gas or vapor into the pump through the inlet valve or port.

2. Compression Phase: Once the diaphragm reaches its maximum downward position, the inlet valve closes to prevent backflow. The diaphragm then starts to move upward, reducing the volume of the chamber. This compression action causes the gas to be expelled through the outlet valve or port.

3. Exhaust Phase: As the diaphragm continues to move upward, the outlet valve closes, and the compressed gas is discharged from the pump. The diaphragm returns to its neutral position, ready for the next suction phase.

Features and Advantages:

Diaphragm vacuum pumps offer several features and advantages that make them suitable for various applications:

No Contamination: Diaphragm pumps are designed to be oil-free and have a sealed pumping chamber. This eliminates the risk of oil contamination of the pumped gas or vapor, making them suitable for applications requiring clean and uncontaminated vacuum conditions, such as laboratory work or medical applications.

Chemical Resistance: The diaphragm is typically made of chemically resistant materials, allowing the pump to handle corrosive or reactive gases without degradation or contamination.

Gentle Operation: The pumping action of diaphragm pumps is gentle and pulsation-free, making them suitable for applications that require precise control or sensitive handling of gases or delicate samples.

Quiet Operation: Diaphragm pumps are known for their quiet operation, reducing noise pollution in the working environment.

Self-Priming: Diaphragm pumps are generally self-priming, meaning they can start and maintain their pumping action without the need for external priming or additional equipment.

Compact and Portable: Diaphragm pumps are often compact and lightweight, allowing for easy installation and portability. They can be used as standalone units or integrated into larger systems.

Applications:

Diaphragm vacuum pumps find applications in various industries and fields, including:

– Laboratory research and analysis

– Medical and healthcare

– Environmental monitoring and analysis

– Vacuum filtration

– Vacuum drying and degassing

– Automotive and manufacturing processes

– Semiconductor and electronics manufacturing

It is important to note that the specific design and operation of diaphragm vacuum pumps may vary across different manufacturers and models. Consulting the manufacturer’s specifications and guidelines is recommended for detailed information on the operation, performance, and suitability of a particular diaphragm pump for a given application.

By utilizing the flexible diaphragm’s movement to create suction and compression, diaphragm vacuum pumps offer reliable and efficient vacuum generation for a wide range of applications.

China Hot selling CHINAMFG Laboratory Equipment 20 L/Min Single Head Diaphragm Vacuum Pump   vacuum pump oil near me		China Hot selling CHINAMFG Laboratory Equipment 20 L/Min Single Head Diaphragm Vacuum Pump   vacuum pump oil near me
editor by Dream 2024-05-14

China wholesaler High Pressure Whirlpool Air Pump Industrial Blower Fish Pond Aeration Engraving Machine Vacuum Pump with high quality

Product Description

Product Description

Customized support    OEM
Place of Origin    China
Power Source    Electric
Structure    Vacuum Pump
Warranty    1 year
Brand Name    lq
Model Number    customized
Horsepower    /
Outlet Size    /
Power    /
motor    /
Product name    air pump
Voltage    380V
Warranty    1year
Material    aluminium alloy
Type    air
Keywords    pump
MOQ    1set
frequency    50/60 Hz
phase    3 phase
Certification    ce

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Air Pump
Voltage: 380V
Warranty: 1year
Material: Aluminium Alloy
Type: Air
Keywords: Pump
Customization:
Available

|

vacuum pump

What Are the Advantages of Using Oil-Sealed Vacuum Pumps?

Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:

1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.

2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.

3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.

4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.

5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.

6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.

7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.

8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.

9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.

10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.

These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.

vacuum pump

What Is the Role of Vacuum Pumps in Pharmaceutical Manufacturing?

Vacuum pumps play a crucial role in various aspects of pharmaceutical manufacturing. Here’s a detailed explanation:

Vacuum pumps are extensively used in pharmaceutical manufacturing processes to support a range of critical operations. Some of the key roles of vacuum pumps in pharmaceutical manufacturing include:

1. Drying and Evaporation: Vacuum pumps are employed in drying and evaporation processes within the pharmaceutical industry. They facilitate the removal of moisture or solvents from pharmaceutical products or intermediates. Vacuum drying chambers or evaporators utilize vacuum pumps to create low-pressure conditions, which lower the boiling points of liquids, allowing them to evaporate at lower temperatures. By applying vacuum, moisture or solvents can be efficiently removed from substances such as active pharmaceutical ingredients (APIs), granules, powders, or coatings, ensuring the desired product quality and stability.

2. Filtration and Filtrate Recovery: Vacuum pumps are used in filtration processes for the separation of solid-liquid mixtures. Vacuum filtration systems typically employ a filter medium, such as filter paper or membranes, to retain solids while allowing the liquid portion to pass through. By applying vacuum to the filtration apparatus, the liquid is drawn through the filter medium, leaving behind the solids. Vacuum pumps facilitate efficient filtration, speeding up the process and improving product quality. Additionally, vacuum pumps can aid in filtrate recovery by collecting and transferring the filtrate for further processing or reuse.

3. Distillation and Purification: Vacuum pumps are essential in distillation and purification processes within the pharmaceutical industry. Distillation involves the separation of liquid mixtures based on their different boiling points. By creating a vacuum environment, vacuum pumps lower the boiling points of the components, allowing them to vaporize and separate more easily. This enables efficient separation and purification of pharmaceutical compounds, including the removal of impurities or the isolation of specific components. Vacuum pumps are utilized in various distillation setups, such as rotary evaporators or thin film evaporators, to achieve precise control over the distillation conditions.

4. Freeze Drying (Lyophilization): Vacuum pumps are integral to the freeze drying process, also known as lyophilization. Lyophilization is a dehydration technique that involves the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. Vacuum pumps create a low-pressure environment in freeze drying chambers, allowing the frozen product to undergo sublimation. During sublimation, the frozen water or solvent directly transitions from the solid phase to the vapor phase, bypassing the liquid phase. Vacuum pumps facilitate efficient and controlled sublimation, leading to the production of stable, shelf-stable pharmaceutical products with extended shelf life.

5. Tablet and Capsule Manufacturing: Vacuum pumps are utilized in tablet and capsule manufacturing processes. They are involved in the creation of vacuum within tablet presses or capsule filling machines. By applying vacuum, the air is removed from the die cavity or capsule cavity, allowing for the precise filling of powders or granules. Vacuum pumps contribute to the production of uniform and well-formed tablets or capsules by ensuring accurate dosing and minimizing air entrapment, which can affect the final product quality.

6. Sterilization and Decontamination: Vacuum pumps are employed in sterilization and decontamination processes within the pharmaceutical industry. Autoclaves and sterilizers utilize vacuum pumps to create a vacuum environment before introducing steam or chemical sterilants. By removing air or gases from the chamber, vacuum pumps assist in achieving effective sterilization or decontamination by enhancing the penetration and distribution of sterilants. Vacuum pumps also aid in the removal of sterilants and residues after the sterilization process is complete.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, dry screw pumps, or liquid ring pumps, may be utilized in pharmaceutical manufacturing depending on the specific requirements of the process and the compatibility with pharmaceutical products.

In summary, vacuum pumps play a vital role in various stages of pharmaceutical manufacturing, including drying and evaporation, filtration and filtrate recovery, distillation and purification, freeze drying (lyophilization), tablet and capsule manufacturing, as well as sterilization and decontamination. By enabling efficient and controlled processes, vacuum pumps contribute to the production of high-quality pharmaceutical products, ensuring the desired characteristics, stability, and safety.

vacuum pump

How Do You Choose the Right Size Vacuum Pump for a Specific Application?

Choosing the right size vacuum pump for a specific application involves considering several factors to ensure optimal performance and efficiency. Here’s a detailed explanation:

1. Required Vacuum Level: The first consideration is the desired vacuum level for your application. Different applications have varying vacuum level requirements, ranging from low vacuum to high vacuum or even ultra-high vacuum. Determine the specific vacuum level needed, such as microns of mercury (mmHg) or pascals (Pa), and choose a vacuum pump capable of achieving and maintaining that level.

2. Pumping Speed: The pumping speed, also known as the displacement or flow rate, is the volume of gas a vacuum pump can remove from a system per unit of time. It is typically expressed in liters per second (L/s) or cubic feet per minute (CFM). Consider the required pumping speed for your application, which depends on factors such as the volume of the system, the gas load, and the desired evacuation time.

3. Gas Load and Composition: The type and composition of the gas or vapor being pumped play a significant role in selecting the right vacuum pump. Different pumps have varying capabilities and compatibilities with specific gases. Some pumps may be suitable for pumping only non-reactive gases, while others can handle corrosive gases or vapors. Consider the gas load and its potential impact on the pump’s performance and materials of construction.

4. Backing Pump Requirements: In some applications, a vacuum pump may require a backing pump to reach and maintain the desired vacuum level. A backing pump provides a rough vacuum, which is then further processed by the primary vacuum pump. Consider whether your application requires a backing pump and ensure compatibility and proper sizing between the primary pump and the backing pump.

5. System Leakage: Evaluate the potential leakage in your system. If your system has significant leakage, you may need a vacuum pump with a higher pumping speed to compensate for the continuous influx of gas. Additionally, consider the impact of leakage on the required vacuum level and the pump’s ability to maintain it.

6. Power Requirements and Operating Cost: Consider the power requirements of the vacuum pump and ensure that your facility can provide the necessary electrical supply. Additionally, assess the operating cost, including energy consumption and maintenance requirements, to choose a pump that aligns with your budget and operational considerations.

7. Size and Space Constraints: Take into account the physical size of the vacuum pump and whether it can fit within the available space in your facility. Consider factors such as pump dimensions, weight, and the need for any additional accessories or support equipment.

8. Manufacturer’s Recommendations and Expert Advice: Consult the manufacturer’s specifications, guidelines, and recommendations for selecting the right pump for your specific application. Additionally, seek expert advice from vacuum pump specialists or engineers who can provide insights based on their experience and knowledge.

By considering these factors and evaluating the specific requirements of your application, you can select the right size vacuum pump that meets the desired vacuum level, pumping speed, gas compatibility, and other essential criteria. Choosing the appropriate vacuum pump ensures efficient operation, optimal performance, and longevity for your application.

China wholesaler High Pressure Whirlpool Air Pump Industrial Blower Fish Pond Aeration Engraving Machine Vacuum Pump   with high quality China wholesaler High Pressure Whirlpool Air Pump Industrial Blower Fish Pond Aeration Engraving Machine Vacuum Pump   with high quality
editor by Dream 2024-05-14

China OEM Vacuum Pump Solar Pump Chemical Injection Pump Micro Magnetic Drive Pump wholesaler

Product Description

Industry leading Durable Solenoid Electric 220V CE High-strength Diaphragm Pump with Factory Price
Key Features / Benefits

  1. Magnetic drive design. Simpler structure.
  2. Applications for hazardous areas. Explosion-proof levels
  3. Class I,Class II.levels of protection IP65, temperature grade T6.
  4. Manual control the output flow,or can be adjusted by accepting 4-20mA signal.
  5. Remote ON/OFF function.
  6. 4-20mA signal feedback.
  7. “Low level”stop pump and alarm output.
  8. Continuous non-volatile memory (EEPROM)–no battery required.
  9. With RS485 communication interface, the standard modbus RUN communications, direct access to DCS or FCS system, can be remote controlled by computer.
  10. Various materials for pump head to adapt to different corrosion requirements.
  11. Fluorine-containing composite diaphragm can be suitable for various application requirements.
  12. With multifunction valve at outlet, which have the functions of pressure release, Anti-siphon, back pressure and help start.
  13. Simple installation, with foot valve,injection valve, suction pipe and discharge pipe.
Trademark AIHangZhou
Pump Head Material PVC/PVDF/SS304/SS316/material can be customized
Key Selling Points Reliable performance/High operating safety/High efficiency & Accurate measurement
Application  Agricultural/Chemical/General Industry/Oil &Gas/Power Generation/Pulp & paper/Textiles/Water
Treatment/Wastewater Treatment/ Cooling towers, etc
Feature Simple maintenance /Corrosion Resistant/Economical & practical
Certification CE/ISO9001:2008 /ISO45001:2018 /ISO14001:2015
Package Type Strong carton box suitable for long distance transportation
Production Capacity 5000 Pcs/ Month

Model Selection & Technical Data

Model Max Capacity(L/H) Max Pressure (Bar) Pipe Dia & Material
JCM4-4.9/20.7 4.9 20.7 3/8 PE
JCMa-9.5/10.3 9.5 10.3 3/8 PE
JCM4-15.1/6.9 15.1 6.9 3/8″ PE
JCM4-30.3/4.1 30.3 4.1 3/8 PE
JCM438/55 38 55 3/8 PE
JCM4-75.7/1.7 75.7 1.7 3/8 PE
JCM4-95/2.07 95 2.07 3/8 PE

 

ZHangZhoug AiHangZhou Technology Co., Ltd was founded in 1997, the registered capital is 51.31 Million RMB, it is a high-tech enterprise which is an integration of design, research & development, production and marketing. AiHangZhou specialized in automatic dosing pump,complete set of dosing skid equipment, steam & water sampling analysis system, control software of skid equipment and generator installation etc…

In 2014, and the wholly owned subsidiary of ZHangZhoug AiHangZhou Engineering Control Technology Co. Ltd. (Registered place: Xihu (West Lake) Dis. District, HangZhou) was founded in the same year; and to improve the core competitiveness of enterprises, the company established ZHangZhoug AiHangZhou Qingyan Exhaust emission purification Co., Ltd. in 2015 together with Japan ACR, Tsinghua University.

 At present, the company is the largest enterprise manufacturing automatic metering pump, complete sets of dosing device and fluid quantitative dosing and proportion dosing, but also the first listed company in the metering pump industry.As a trust worthy China Supplier,we have exported our products to lots of countries,and we sincerely hope to cooperate with more friends in the world.
 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Year
Certification: ISO9001:2008, RoHS, CE, ISO45001:2018 /ISO14001:2015
Samples:
US$ 2000/Piece
1 Piece(Min.Order)

|

Order Sample

Special materials can be customized
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

diaphragm vane pump

Are diaphragm vacuum pumps environmentally friendly and compliant with regulations?

Diaphragm vacuum pumps are generally considered to be environmentally friendly and compliant with regulations. Here’s a detailed explanation:

Environmental Friendliness: Diaphragm vacuum pumps offer several features that contribute to their environmental friendliness:

No Oil Lubrication: Diaphragm pumps operate without the need for oil lubrication, which eliminates the risk of oil contamination in the vacuum system. This is particularly important in applications where oil vapor contamination could affect product quality or pose environmental hazards. The absence of oil lubrication also reduces the need for oil changes and disposal, resulting in lower environmental impact.

Low Noise Emission: Diaphragm pumps are known for their relatively quiet operation compared to other types of vacuum pumps. The reduced noise emission makes them more environmentally friendly, particularly in settings where noise pollution needs to be minimized.

Energy Efficiency: Diaphragm vacuum pumps can be designed to be energy-efficient, consuming less electrical power compared to other vacuum pump types. Reduced energy consumption not only contributes to cost savings but also helps reduce the overall environmental impact associated with energy usage.

Chemical Compatibility: Diaphragm pumps are available in models constructed with chemically resistant materials. This allows them to handle corrosive gases or chemical vapors without degradation or release of harmful substances, further ensuring environmental compatibility.

Regulatory Compliance: Diaphragm vacuum pumps are designed and manufactured to meet regulatory standards and requirements. They are commonly used in various industries and applications where compliance with environmental and safety regulations is crucial. Some specific regulations that diaphragm vacuum pumps may comply with include:

Restriction of Hazardous Substances (RoHS): Diaphragm pumps are often manufactured to comply with RoHS directives, which restrict the use of hazardous substances such as lead, mercury, cadmium, and certain flame retardants in electrical and electronic equipment.

CE Marking: Diaphragm pumps intended for sale within the European Economic Area (EEA) are required to bear the CE marking, indicating compliance with relevant European Union (EU) directives related to health, safety, and environmental protection.

International Electrotechnical Commission (IEC) Standards: Diaphragm vacuum pumps may adhere to specific IEC standards that ensure their safety, performance, and environmental compatibility.

It’s important to note that while diaphragm vacuum pumps are generally considered environmentally friendly and compliant with regulations, it’s essential to select pumps from reputable manufacturers and suppliers. This ensures that the pumps meet the necessary standards and certifications applicable to a specific industry or application.

In summary, diaphragm vacuum pumps are environmentally friendly due to their oil-free operation, low noise emission, energy efficiency, and chemical compatibility. They are designed and manufactured to comply with regulatory standards and requirements, such as RoHS directives, CE marking, and IEC standards. When choosing diaphragm vacuum pumps, it’s advisable to verify that they come from reliable sources and meet the necessary certifications for your specific application to ensure environmental compatibility and regulatory compliance.

diaphragm vane pump

What are the maintenance requirements for diaphragm vacuum pumps, and are they user-friendly?

Diaphragm vacuum pumps have specific maintenance requirements to ensure optimal performance and longevity. Here’s a detailed explanation:

Maintenance requirements for diaphragm vacuum pumps typically include the following:

Regular Inspection: Diaphragm pumps should be inspected regularly to check for any signs of wear, damage, or leaks. This includes inspecting the diaphragms, valves, seals, and other critical components for integrity and proper functioning. Regular inspections help identify and address potential issues before they escalate into more significant problems.

Cleaning: Keeping the pump clean is essential for efficient operation. It involves removing any accumulated dust, dirt, or debris from the pump’s exterior and ensuring that the air intake and exhaust ports are free from obstructions. Cleaning should be performed according to the manufacturer’s recommendations using appropriate cleaning agents and techniques.

Diaphragm Replacement: Over time, diaphragms in diaphragm vacuum pumps may wear out or become damaged. Regularly replacing worn or damaged diaphragms is crucial to maintain the pump’s performance. The frequency of diaphragm replacement depends on factors such as operating conditions, usage intensity, and the manufacturer’s recommendations.

Lubrication: Some diaphragm pumps may require lubrication for certain components, such as bearings or moving parts. However, many diaphragm pumps are designed to operate without the need for lubrication, offering the advantage of reduced maintenance and eliminating the risk of oil contamination in sensitive applications.

Seal Replacement: The seals used in diaphragm vacuum pumps may require periodic replacement to ensure airtight operation and prevent air leakage. The frequency of seal replacement depends on factors such as operating conditions and the manufacturer’s recommendations. It’s important to use high-quality replacement seals to maintain the pump’s performance and prevent any compromise in vacuum levels.

As for user-friendliness, diaphragm vacuum pumps are generally considered to be user-friendly due to the following reasons:

Ease of Operation: Diaphragm pumps are designed for straightforward operation, typically involving simple on/off switches or control knobs. They often have intuitive interfaces that make them easy to use, even for individuals with limited technical expertise.

Compact and Portable: Diaphragm vacuum pumps are often compact and lightweight, making them easy to handle and move around. Their small size and portable nature contribute to their user-friendliness, especially in applications where mobility is important.

Minimal Maintenance: Compared to some other types of vacuum pumps, diaphragm pumps generally have lower maintenance requirements. They often do not require oil changes or complex maintenance procedures, reducing the time and effort needed for upkeep.

Clear Documentation: Manufacturers provide user manuals and documentation that outline maintenance procedures, troubleshooting guides, and safety precautions. These resources help users understand the maintenance requirements and ensure that the pumps are operated and maintained correctly.

While diaphragm vacuum pumps are generally user-friendly, it’s important to note that proper training and adherence to safety guidelines are still necessary to ensure safe and effective operation. Following the manufacturer’s instructions and seeking professional assistance when needed are essential for maintaining the pump’s performance and extending its lifespan.

In summary, diaphragm vacuum pumps have specific maintenance requirements, including regular inspection, cleaning, diaphragm replacement, and seal replacement. They are generally considered user-friendly due to their ease of operation, compact design, minimal maintenance needs, and clear documentation provided by manufacturers.

diaphragm vane pump

What are the typical applications of diaphragm vacuum pumps in laboratories and industries?

Diaphragm vacuum pumps find widespread use in laboratories and various industries due to their versatile capabilities. Here’s a detailed explanation of the typical applications of diaphragm vacuum pumps in laboratories and industries:

In Laboratories:

Laboratory Research and Analysis: Diaphragm vacuum pumps are extensively used in laboratories for various research and analytical applications. They provide vacuum conditions necessary for techniques such as filtration, degassing, rotary evaporation, centrifugation, and vacuum ovens. Diaphragm pumps are also used in analytical instruments like gas chromatographs, mass spectrometers, and vacuum-based sample preparation systems.

Medical and Healthcare: Diaphragm pumps are employed in medical and healthcare settings for applications such as vacuum filtration in microbiology, vacuum aspiration in clinical laboratories, vacuum sealing of sterilized containers, and vacuum drying in medical device manufacturing. They are also used in dental clinics for suction and aspiration procedures.

Environmental Monitoring and Analysis: Diaphragm vacuum pumps play a crucial role in environmental monitoring and analysis. They are used for air sampling, gas collection, and monitoring of pollutants in ambient air or emission sources. Diaphragm pumps are utilized in environmental testing laboratories for sample preparation and analysis, such as water and soil testing.

In Industries:

Vacuum Filtration: Diaphragm vacuum pumps are commonly used in industries for filtration processes. They create a vacuum to draw liquids through a filter medium, separating solids from the liquid. This technique is widely employed in industries such as pharmaceuticals, biotechnology, food and beverage, and chemical processing.

Vacuum Drying and Degassing: Diaphragm pumps facilitate vacuum drying and degassing processes in industries. They help remove moisture or volatile substances from materials or products under vacuum conditions. This is crucial in industries like electronics manufacturing, automotive, aerospace, and materials science.

Automotive and Manufacturing Processes: Diaphragm vacuum pumps find applications in automotive and manufacturing processes. They are used for vacuum-assisted molding, vacuum lifting and handling of objects, vacuum packaging, and vacuum-based testing or leak detection in components and systems.

Semiconductor and Electronics Manufacturing: Diaphragm pumps are extensively utilized in the semiconductor and electronics industry. They provide vacuum conditions for processes such as wafer handling, thin film deposition, etching, and packaging. Diaphragm pumps are preferred due to their oil-free operation, which prevents contamination of sensitive electronic components.

These are some of the typical applications of diaphragm vacuum pumps in laboratories and industries. The versatility, oil-free operation, chemical resistance, and compact design of diaphragm pumps make them suitable for a wide range of applications, contributing to their popularity across various sectors.

China OEM Vacuum Pump Solar Pump Chemical Injection Pump Micro Magnetic Drive Pump   wholesaler China OEM Vacuum Pump Solar Pump Chemical Injection Pump Micro Magnetic Drive Pump   wholesaler
editor by Dream 2024-05-14

China wholesaler Rd 40 Stainless Steel Air Double Vacuum Membrane Slurry Pump vacuum pump electric

Product Description

Diaphragm Pump Advantage:
1. Easy to install.
2. Easy maintenance – directly on line without dismantling the pump.
3. Quick start, strong self-suction capability.
4. Center body and sealing parts are imported from USA.
5. Center body is treated with anodizing, to well resist oxidation and tough environment.
6. Able to be connected with solenoid valve to realize remote control.
7. Lube free
8. No crash

Diaphragm pump
Exported to more than 30 countries and regions, including Southeast Asia, the Middle East, Europe and United States, ect., already has been granted 35 patents.

Diaphragm pump Certificate:
CE, BV, SGS, CCS, ISO9001, vessel CCS

After sales service:
15-years guarantee for structural parts of certer body, 1-year guarantee for the whole pump

Diaphragm pump Application area:
Chemical Industry; Coating Industry; Painting Industry; Dye Industry; Pigment and Textile Chemical Industry; Food Industry; Water treatment Industry; Petroleum Industry; Environmental protection Industry; Pharmaceutical Industry

Max Working Pressure 120 psi(0.84 Mpa,8.4bar)
Max Flow Rate 118 gpm (446 lpm)
Max Reciprocating Speed 200 cpm
Max Suction Height (Dry Sucking) 5m
Max Permitted Grain 0.2 in(5mm)
Max Air Consumption 80 scfm (40L/s)
Air Inlet Size 1/2 in.npt(f)
Air Outlet Size 1/2 in.npt(f)
Fluid Inlet Size 1-1/2 in.
Fluid Outlet Size 1-1/2 in.
Weight AL pump 16kg; SST  29kg

Packing & Shipping

Our service 

* All of the enquiry will be replied within 24 working hours

* Professional pump producer, with design team.

* All of the goods are packed with standard export wooden case (non-fumigation)

* Fast after-service

Company Introduction
RUDI pump (ZheJiang Rudi Fluid Conveyor Co., Ltd. ) is a professional manufacturer of air operated diaphragm pump, with over 20-year manufacturing experience in this field. The company has 2 production bases, 3 branch offices, and approx. 120 employees in total, among which there are more than 30 engineers. 

Our pumps have achieved more than 30 patents, CE, ISO9001, SGS certificates. Thanks to the reliable quality, we have won big appraise from our clients all these years. 

The air operated diaphragm pumps manufactured by RUDI use compressed air as power source, and it is the most advanced type of diaphragm pumps in market for the moment. It adopts three-way air pilot valve to achieve real no dead stop and faster reversing. Compared with other traditional domestic pumps, it has larger flow rate, more stable operation, and smaller pulsation. It is widely applied in waste water treatment, chemical industry, petrochemical industry, painting, ceramics, environmental protection, printing and dyeing, etc. to deal with all kinds of corrosive, volatile, flammable, poisonous fluids with particles and high viscosity. 

We have the following materials available, and our engineers will select the most suitable and economical material for you according to your specific working conditions. 

Wetted parts material: PP, PVDF, Acetal, Aluminum alloy, Ductile iron, stainless steel, etc. 

Diaphragm material: Teflon, Santoprene, Viton, Hytrel, Buna-N, etc. 

Available inlet/outlet size: 1/4″, 3/8″, 1/2″, 3/4″, 1″, 1-1/2″, 2″, 3″

Connection type: 
-Threaded connection: Plastic pumps from 1/4″ to 1-1/2″, and all metal pumps. 
-Fanged connection: Plastic pumps from 1/2″ to 3″.

FAQ

1. Q: What is MOQ?

     A: 1pc for regular product. Samples are available and sample cost can be deducted from future orders.
 

2. Q: What’s the payment?

    A: D/P, T/T, Western Union , please confirm with us with exact order.

 

3. Q: What is the delivery time?

    A: Depend on the quantity.

 

4. Q: What about package?

    A: Cartons with foam inside & wooden case.

 

5. Q: How are the products delivered to us?

    A: By International express.

 

6. Q: How long is the warranty?

A: 15 years warranty for air motor, 5 years for pump body.

 

7. Q: Whether the products can be made of different standard?

    A: Of course yes. We could produce product according to custom need.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 1 Year Warranty (Except Wearing Parts)
Material: Stainless Steel
Power: Pneumatic
Valve Body Type: Diaphragm
Function: Self-Priming Type
Diaphragm Material: FPM
Customization:
Available

|

diaphragm vane pump

What safety features are typically integrated into diaphragm vacuum pump systems?

Diaphragm vacuum pump systems typically incorporate various safety features to ensure safe operation and protect both the users and the equipment. Here’s a detailed explanation:

1. Overpressure Protection: Diaphragm vacuum pump systems often include overpressure protection mechanisms to prevent excessive pressure buildup. These mechanisms can be in the form of pressure relief valves or pressure sensors that automatically shut off the pump or release excess pressure if it exceeds the predefined limits. Overpressure protection safeguards the system from potential damage and reduces the risk of accidents or equipment failure.

2. Thermal Protection: Thermal protection features are designed to prevent the pump from overheating. Diaphragm pumps can generate heat during operation, especially in continuous or intensive use. Thermal protection mechanisms, such as thermal switches or temperature sensors, monitor the pump’s temperature and automatically shut it down or activate cooling systems if the temperature exceeds safe limits. This helps prevent damage to the pump and reduces the risk of fire or other safety hazards.

3. Leak Detection: Diaphragm vacuum pump systems may incorporate leak detection mechanisms to alert users in case of any air or gas leakage. These mechanisms can include pressure sensors or flow sensors that monitor the system’s integrity. If a leak is detected, visual or audible alarms may be triggered, indicating the need for immediate attention and repair to maintain the system’s efficiency and prevent the release of potentially harmful substances into the environment.

4. Electrical Safety: Diaphragm pump systems have electrical safety features to protect against electrical hazards. This includes measures such as ground fault circuit interrupters (GFCI) or residual current devices (RCD) that detect and interrupt electrical faults, preventing electric shocks or short circuits. Proper grounding and insulation of electrical components are also important safety considerations in diaphragm pump systems.

5. Emergency Stop: Many diaphragm pump systems are equipped with an emergency stop button or switch that allows users to quickly shut down the pump in case of an emergency or hazardous situation. The emergency stop feature provides a convenient and immediate means to halt pump operation, ensuring the safety of the users and preventing further risks or damages.

6. System Monitoring and Alarms: Advanced diaphragm pump systems may incorporate monitoring features that continuously assess the system’s performance and provide real-time feedback. This can include monitoring parameters such as vacuum levels, temperature, pressure, or flow rates. Alarms or visual indicators are often integrated to alert users in case of deviations from normal operating conditions, enabling prompt corrective actions and preventing potential safety issues.

It’s important to note that the specific safety features integrated into diaphragm vacuum pump systems may vary depending on the manufacturer, model, and intended application. Users should carefully review the product documentation and follow the manufacturer’s instructions regarding safety precautions, installation requirements, and maintenance procedures to ensure safe and proper use of the equipment.

In summary, diaphragm vacuum pump systems typically incorporate safety features such as overpressure protection, thermal protection, leak detection, electrical safety measures, emergency stop functionalities, and system monitoring with alarms. These safety features aim to protect users, prevent equipment damage, and ensure the safe and reliable operation of the diaphragm pump system.

diaphragm vane pump

How do diaphragm vacuum pumps handle condensable vapors and liquids?

Diaphragm vacuum pumps have certain mechanisms in place to handle condensable vapors and liquids encountered during operation. Here’s a detailed explanation:

When diaphragm vacuum pumps encounter condensable vapors or liquids, the following methods are typically employed to handle them:

Condensate Traps: Diaphragm vacuum pumps often incorporate condensate traps in their design. These traps are positioned in the vacuum line and are specifically designed to capture and collect condensable vapors and liquids. The traps typically consist of a cooled surface or a series of baffles that cause the condensable substances to condense and collect in a separate reservoir, preventing them from entering the pump.

Chemical Resistance: Diaphragm pumps are often constructed using materials that are resistant to the corrosive effects of condensable vapors and liquids. Materials such as PTFE (polytetrafluoroethylene) or other chemically resistant polymers are commonly used in the construction of diaphragm pumps to ensure compatibility with various liquids and vapors encountered in different applications.

Separation and Filtration: In some cases, diaphragm vacuum pumps may incorporate separation and filtration mechanisms to handle condensable substances. These mechanisms can include filters or coalescing elements that help to separate the liquid or vapor from the gas stream, allowing the gas to be pumped while preventing the liquid or vapor from entering the pump.

It’s important to note that while diaphragm vacuum pumps can handle condensable vapors and liquids to a certain extent, there are limitations. If the amount of condensable substances is excessive or if the pump is not specifically designed to handle certain types of condensates, it may lead to pump performance issues or damage. In such cases, it may be necessary to implement additional vapor traps, cold traps, or other specialized equipment to effectively manage the condensable substances.

In summary, diaphragm vacuum pumps handle condensable vapors and liquids through the use of condensate traps, chemical-resistant materials, and separation/filtration mechanisms. These features help prevent the condensable substances from entering the pump and ensure reliable and efficient operation.

diaphragm vane pump

What are the advantages of using diaphragm vacuum pumps in various applications?

Diaphragm vacuum pumps offer several advantages that make them well-suited for various applications. Here’s a detailed explanation of the advantages:

1. Oil-Free and Contamination-Free Operation:

Diaphragm vacuum pumps are designed to be oil-free, meaning they do not require lubricating oil for operation. This eliminates the risk of oil contamination in the pumped gas or vapor, making them ideal for applications that require clean and uncontaminated vacuum conditions. Industries such as laboratory research, medical and healthcare, and semiconductor manufacturing benefit from the oil-free operation of diaphragm pumps.

2. Chemical Resistance:

Diaphragm pumps are typically constructed with materials that offer excellent chemical resistance. The diaphragm, valves, and other wetted parts are often made of chemically resistant materials such as rubber or elastomer. This allows diaphragm vacuum pumps to handle corrosive or reactive gases without degradation or contamination, making them suitable for applications in chemical processing, environmental monitoring, and analytical laboratories.

3. Gentle and Pulsation-Free Operation:

Diaphragm pumps provide a gentle pumping action that is free from pulsations. This characteristic is particularly advantageous in applications that require precise control or sensitive handling of gases or delicate samples. Examples include vacuum filtration, vacuum drying, degassing processes, and laboratory applications where consistent and smooth vacuum conditions are necessary.

4. Quiet Operation:

Diaphragm vacuum pumps are known for their quiet operation compared to other types of pumps. The reduced noise level contributes to a more comfortable working environment, making them suitable for applications where noise pollution needs to be minimized, such as laboratories, medical facilities, and research institutions.

5. Self-Priming Capability:

Diaphragm pumps are generally self-priming, meaning they can start and maintain their pumping action without the need for external priming or additional equipment. This makes them easy to use and convenient, especially in applications where frequent start-stop cycles or intermittent operation is required.

6. Compact and Portable:

Diaphragm vacuum pumps are often compact and lightweight, making them easy to install, move, or transport. Their compact size allows for flexible integration into existing systems or placement in confined spaces. The portability of diaphragm pumps is advantageous in applications that require mobility or where multiple pumping stations are needed in different locations.

7. Versatile Applications:

Diaphragm vacuum pumps find applications in a wide range of industries and fields. Some common applications include:

– Laboratory research and analysis

– Medical and healthcare

– Environmental monitoring and analysis

– Vacuum filtration

– Vacuum drying and degassing

– Automotive and manufacturing processes

– Semiconductor and electronics manufacturing

It’s important to note that the specific advantages of using diaphragm vacuum pumps can vary depending on the pump design, model, and application requirements. Manufacturers provide detailed specifications and guidelines that highlight the advantages and limitations of their diaphragm pumps for specific applications.

China wholesaler Rd 40 Stainless Steel Air Double Vacuum Membrane Slurry Pump   vacuum pump electricChina wholesaler Rd 40 Stainless Steel Air Double Vacuum Membrane Slurry Pump   vacuum pump electric
editor by Dream 2024-05-14