Tag Archives: vacuum pump water

China Standard 132~400kw Water Liquid Ring 2bec50 Vacuum Pump supplier

Product Description

Product Description

2BEC series liquid ring vacuum pump and compressor, with its superior performance, becomes the preferred equipment of coal mine gas pumping system, and has the following unique advantages compared with other vacuum pumps.
The compression process of gas is isothermal compression, so the pump is suitable for pumping and compressing flammable, explosive and toxic gases. It is very suitable for long-term continuous operation, especially for coal mine gas extraction and other extremely harsh working conditions, and is widely praised by the industry.

 

Main features

High efficiency and energy saving: 2BEC represents a relatively new technology in the liquid ring pump industry. Its efficiency is 10-30% higher than that of the traditional design of similar models, and the energy saving effect is up to 20%.
Low wear: The 2BEC has only 1 rotating part – the impeller. Since the compression of the gas is carried out by the liquid ring, the impeller rotates without any friction.
Robust: Thanks to the flat disc design, the correspondingly large assembly clearance and the automatic adjustment of the working fluid flow, the 2BEC can easily handle situations such as high outlet pressure or heat load, entrained inhalation of a chamber of water or impurities with the gas.
Easy maintenance: The 2BEC can be inspected through inspection ports on both sides of the pump cover for clearances, corrosion, scale buildup, or other conditions that may affect pump operation.
 

Technical data

Model Ultimate Pressure(hPa) Pump rotation speed(r/min) Pumping Speed (m3/min) Motor Power(KW) Driving Mode(mm) Moter voltage Inlet Dia.(mm) Outlet Dia.(mm)
2BEC40 500 300 73 75 belt 380V 300 300
160 323 80 90 Gear or belt 380V
340 81 90 380V
367 85 110 380V
390 94 110 380V
393 92 110 380V
440 105 132 380V
449 110 132 380V
490 115 160 380V
530 125 200 380V
570 134 200 380V
610 143 200 380V
2BEC42 500 300 95 110 Gear or belt 380V 300 300
160 330 110 132 380V
340 113 132 380V
380 120 132 380V
390 126 160 380V
420 134 185 380V
440 141 200 380V
490 156 220/250 380V
530 170 250 6KV
570 180 250 6KV
610 191 280 6KV
2BEC50 500 230 124 132 Gear 380V 350 350
160 242 125 160 380V
260 144 160 380V
266 145 185 380V
294 165 200 380V
300 168 200 380V
340 190 220 6KV
380 210 280 6KV
420 230 315 6KV
470 285 400 6KV
2BEC52 500 230 150 185 Gear 6KV 350 350
160 260 165 200 6KV
300 205 250 6KV
340 235 280 6KV
380 250 315 6KV
420 283 400 6KV
470 315 450 6KV
2BEC60 500 200 180 185 Gear 380V 400 400
160 230 210 250 6KV
260 240 280 6KV
290 265 315 6KV
320 282 355 6KV
336 285 355 6KV
350 316 400 6KV
400 360 560 6KV
2BEC62 500 200 220 220 Gear 6KV 400 400
160 230 255 280 6KV
280 285 355 6KV
266 290 355 6KV
290 320 400 6KV
320 355 450 6KV
336 380 450 6KV
350 385 500 6KV
400 435 630 6KV
2BEC67 500 180 255 220 Gear 6KV 500 500
160 210 290 355 6KV
240 340 400 6KV
270 385 450 6KV
300 400 500 6KV
320 420 560 6KV
330 455 630 6KV
370 515 800 6KV
2BEC72 500 170 305 315 Gear 6KV 500 500
160 190 365 400 6KV
210 410 450 6KV
240 460 500 6KV
270 510 630 6KV
300 565 710 6KV
340 633 900 6KV
2BEC80 160 190 513 560 Gear 6KV or 10KV 600 600
210 562 630
240 630 800
270 710 900
300 790 1120
2BEC100 160 170 850 900 Gear 6KV or 10KV 700 700
190 920 1120
210 1000 1250
225 1100 1600
240 1120 1800

The data are derived under the following conditions: ( 1 ) water temperature 15°C ( 2 ) air 20°C ( 3 ) gas relative humidity 70% ( 4 ) atmospheric pressure 0.1013MPa ( 5 ) pumping speed deviation of 10%

 

FAQ

Q: What information should I offer for an inquiry?
A: You can inquire based on the model directly, but it is always recommended that you contact us so that we can help you to check if the pump is the most appropriate for your application.

Q: Can you make a customized vacuum pump?
A: Yes, we can do some special designs to meet customer applications. Such as customized sealing systems, speical surface treatment can be applied for roots vacuum pump and screw vacuum pump. Please contact us if you have special requirements. 

Q: I have problems with our vacuum pumps or vacuum systems, can you offer some help?
A: We have application and design engineers with more than 30 years of experience in vacuum applications in different industries and help a lot of customers resolve their problems, such as leakage issues, energy-saving solutions, more environment-friendly vacuum systems, etc. Please contact us and we’ll be very happy if we can offer any help to your vacuum system.

Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.

Q: What is your MOQ?
A: 1 piece or 1 set.

Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.

Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.

Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).

Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Video Instruction
Warranty: 1 Year
Ultimate Pressure: 500 or 160 Hpa
Motor Speed: 230~470 Rpm
Nominal Pumping Speed: 124~285m3/Min
Motor Power: 132~400kw

vacuum pump

What Are the Advantages of Using Oil-Sealed Vacuum Pumps?

Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:

1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.

2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.

3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.

4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.

5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.

6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.

7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.

8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.

9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.

10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.

These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.

vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China Standard 132~400kw Water Liquid Ring 2bec50 Vacuum Pump   supplier China Standard 132~400kw Water Liquid Ring 2bec50 Vacuum Pump   supplier
editor by Dream 2024-05-15

China Standard Dual Vacuum Waste Water Electric Air Operated Diaphragm Pump with Good quality

Product Description

Product Description

Pneumatic diaphragm pump is a new type of conveying equipment, which uses compressed air as the power source. It can be used for all kinds of ultra-low temperature liquids, corrosive liquids, liquids with particles, high viscosity, volatile, flammable, and highly toxic liquids, which can all be exhausted.

Working Principle
In the 2 symmetrical working chambers of the diaphragm pump, each is equipped with an elastic diaphragm, and the connecting rod integrates the 2 diaphragms into one. After the compressed air enters the air valve chamber from the intake joint of the pump, it pushes the diaphragms of the 2 working chambers and drives the diaphragms connected by the connecting rods to move synchronously. At the same time, the gas in the other working chamber is discharged out of the pump from the back of its diaphragm. When the piston reaches the end of the stroke, the valve mechanism will automatically introduce compressed air into the other working chamber, and push the diaphragm pump to move in the reverse direction, which forms a synchronous reciprocating movement of the 2 diaphragms. Two one-way ball valves are set in each working chamber. The reciprocating movement of the diaphragm causes the internal volume of the working chamber to change. As the 2 one-way ball valves alternately open and close, continuous suction and discharge of liquid will happen.
 

Low temperature pneumatic diaphragm pump
Model LQF-1 LQF-3 LQF-7 LQF-22 LFQ-34 LFQ-62
Maximum flow (t/h) 1 3 7 22 34 62
Maximum lift (m) 70 70 84 84 84 84
Maximum suction (m) 4 4.5 5.48 5.48 5.48 7.6
Outlet pressure (Mpa) 0.7 0.7 0.84 0.84 0.84 8.4
Conveying medium temperature (ºC) -80 ~ 150
Particle diameter (mm) 1.5 2.5 3.2 6.4 6.4 9.4
Caliber (mm) 15 20 25 40 50 80
Inlet caliber (in) 43834 43834 43832 43832 43832 43894
Air consumption (m3/min) 0.36 0.36 0.67 0.9 1.5-2 43894
Air compressor recommendation (kw) 3 3 5.5 7.5 44150 22

Product Details
Product Applications

1.Chemical industry: acids, alkalis, solvents, suspended solids, dispersion systems.
2.Petrochemical industry: crude oil, heavy oil, grease, mud, sludge, etc.
3.Coating industry: resin, solvent, colorant, paint, etc.
4.Daily chemical industry: detergent, shampoo, lotion, cream, hand cream, surfactant.
5.Ceramic industry: mud slurry, pottery slurry, lime slurry, clay slurry.
6.Mining industry: coal slurry, magma, mud, mortar, explosive slurry, lubricating oil, etc.
7.Water treatment: lime slurry, soft sediment, sewage, chemicals, wastewater.
8.Food industry: liquid semi-solid, chocolate, brine, vinegar, syrup, vegetable oil, soybean oil,honey, animal blood.
9.Beverage industry: yeast, syrup, concentrate, gas-liquid mixture, wine, fruit juice, etc.
10.Pharmaceutical industry: solvents, acids, alkalis, plant extracts, ointments, plasma and other pharmaceutical liquids.
11.Paper industry: binders, resins, paints, inks, pigments, hydrogen peroxide, etc.
12.Electronics industry: solvents, electroplating solutions, cleaning solutions, sulfuric acid, nitric acid, waste acids, corrosive acids.
13.Textile industry: dye chemicals, resins, glues, etc.
14.Construction industry: cement slurry, ceramic tile binder, rock slurry, ceiling paint, etc.
15.Automotive industry: polishing emulsion, oil, coolant, automotive primer, oil emulsion paint, varnish, additives,degreasing fluid, paint, etc.
16.Furniture industry: adhesives, varnishes, dispersion systems, solvents, colorants, white wood glue, epoxy resin,starch binder.
17.Metallurgy, casting and dyeing industry: metal slurry, hydroxide and carbide slurry, dust washing slurry, etc.

Corollary Equipment
 

1. Stainless steel tank, used for feeding and discharging

2. Extract centrifuge, used for feeding and discharging

3. Filter, used for pressurized feed

FAQ

Q: Why does the air operated diaphragm pump not have a power cord?
This is a device that uses compressed air as a power source and does not require direct power connection.

Q: What should I do if the pulse is very strong when the liquid of the air operated diaphragm pump circulates?
Under normal circumstances, there is a pulse, if you need to eliminate the pulse, you can choose a pulse damper.

Q: Can the pneumatic diaphragm pump suck in and discharge low-temperature ethanol at -80°C?
Yes. All parts exposed to low-temperature ethanol are made of low-temperature-resistant stainless steel and PTFE.

Q: Can the diaphragm pump work when there is pressure in the inlet?
No, there are 4 ball valves and ball seats on the upper and lower covers of the diaphragm pump. When the inlet is under pressure, the ball cannot fall back and produce suction.

Q: Can the equipment be OEM?
Yes.

Our Service
 

Pre-Sale Service

  1. Provide 24-hour technical consultation and reply;
  2. Provide professional quotation information;
  3. Provide detailed product performance specification;
  4. According to product’s using condition, technicians will offer rationalization proposals to assist clients to select proper product types;
  5. Provide other corollary equipment according to client requirements.

In-Sale Service

  1. With supervision from the source of products, the qualified rate of raw materials entering the factory can reach 100%;
  2. Whole manufacturing process are in strict accordance with promised procedure requirements, product qualified rate can reach 100%;
  3. Provide product’s inspection record of key junctures to customers;
  4. Provide production schedule photos to customers at regular intervals;
  5. Package and transport of products are in strict accordance with the export standard;
  6. Provide transportation schedule information to clients timely.

After-Sale Service

  1. Provide targeted installation video;
  2. Under the premise of correct installation, normal maintenance and using, we guarantee one-year warranty period;
  3. When warranty period has expired, our sold products enjoys lifetime guarantee repair, we only charge cost price for changing product’s standard component and sealing component;
  4. During installation and adjustment period, our after-sale service staff will communicate with customers frequently to know product’s running state in time. Assist customers to install and adjust products until customers are satisfied;
  5. If product has malfunction during operation period, we’ll offer you satisfied answer in time. We’ll reply you within 1 hour and provide solution or send staff to spot within 24 hours after receiving maintenance notification;
  6. Lifelong free technical support. Conduct satisfaction survey and inquiry equipment running condition to clients by telephone or e-mail semiannually from the first day of equipment running, put on records of acquired information;
  7. Provide assistance in solving problems such as equipment damage in the transport.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE
Voltage: 220V
Material: Stainless Steel
Power: Hydraulic
Diaphragm Material: Teflon
Performance: Corrosion
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|

vacuum pump

How Are Vacuum Pumps Employed in the Production of Electronic Components?

Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:

The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:

1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.

2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.

3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.

4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.

5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.

6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.

7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.

It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.

In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.

vacuum pump

Can Vacuum Pumps Be Used for Chemical Distillation?

Yes, vacuum pumps are commonly used in chemical distillation processes. Here’s a detailed explanation:

Chemical distillation is a technique used to separate or purify components of a mixture based on their different boiling points. The process involves heating the mixture to evaporate the desired component and then condensing the vapor to collect the purified substance. Vacuum pumps play a crucial role in chemical distillation by creating a reduced pressure environment, which lowers the boiling points of the components and enables distillation at lower temperatures.

Here are some key aspects of using vacuum pumps in chemical distillation:

1. Reduced Pressure: By creating a vacuum or low-pressure environment in the distillation apparatus, vacuum pumps lower the pressure inside the system. This reduction in pressure lowers the boiling points of the components, allowing distillation to occur at temperatures lower than their normal boiling points. This is particularly useful for heat-sensitive or high-boiling-point compounds that would decompose or become thermally degraded at higher temperatures.

2. Increased Boiling Point Separation: Vacuum distillation increases the separation between the boiling points of the components, making it easier to achieve a higher degree of purification. In regular atmospheric distillation, the boiling points of some components may overlap, leading to less effective separation. By operating under vacuum, the boiling points of the components are further apart, improving the selectivity and efficiency of the distillation process.

3. Energy Efficiency: Vacuum distillation can be more energy-efficient compared to distillation under atmospheric conditions. The reduced pressure lowers the required temperature for distillation, resulting in reduced energy consumption and lower operating costs. This is particularly advantageous when dealing with large-scale distillation processes or when distilling heat-sensitive compounds that require careful temperature control.

4. Types of Vacuum Pumps: Different types of vacuum pumps can be used in chemical distillation depending on the specific requirements of the process. Some commonly used vacuum pump types include:

– Rotary Vane Pumps: Rotary vane pumps are widely used in chemical distillation due to their ability to achieve moderate vacuum levels and handle various gases. They work by using rotating vanes to create chambers that expand and contract, enabling the pumping of gas or vapor.

– Diaphragm Pumps: Diaphragm pumps are suitable for smaller-scale distillation processes. They use a flexible diaphragm that moves up and down to create a vacuum and compress the gas or vapor. Diaphragm pumps are often oil-free, making them suitable for applications where avoiding oil contamination is essential.

– Liquid Ring Pumps: Liquid ring pumps can handle more demanding distillation processes and corrosive gases. They rely on a rotating liquid ring to create a seal and compress the gas or vapor. Liquid ring pumps are commonly used in chemical and petrochemical industries.

– Dry Screw Pumps: Dry screw pumps are suitable for high-vacuum distillation processes. They use intermeshing screws to compress and transport gas or vapor. Dry screw pumps are known for their high pumping speeds, low noise levels, and oil-free operation.

Overall, vacuum pumps are integral to chemical distillation processes as they create the necessary reduced pressure environment that enables distillation at lower temperatures. By using vacuum pumps, it is possible to achieve better separation, improve energy efficiency, and handle heat-sensitive compounds effectively. The choice of vacuum pump depends on factors such as the required vacuum level, the scale of the distillation process, and the nature of the compounds being distilled.

vacuum pump

What Industries Commonly Rely on Vacuum Pump Technology?

Vacuum pump technology finds applications in various industries where creating and controlling vacuum or low-pressure environments is crucial. Here’s a detailed explanation:

1. Manufacturing and Production: Vacuum pumps are extensively used in manufacturing and production processes across multiple industries. They are employed for tasks such as vacuum molding, vacuum packaging, vacuum degassing, vacuum drying, and vacuum distillation. Industries like automotive, aerospace, electronics, pharmaceuticals, and food processing rely on vacuum pump technology to achieve precise and controlled manufacturing conditions.

2. Chemical and Pharmaceutical: The chemical and pharmaceutical industries heavily rely on vacuum pumps for numerous applications. These include solvent recovery, vacuum filtration, vacuum drying, distillation, crystallization, and evaporation. Vacuum pumps enable these industries to carry out critical processes under reduced pressure, ensuring efficient separation, purification, and synthesis of various chemical compounds and pharmaceutical products.

3. Semiconductor and Electronics: The semiconductor and electronics industries extensively use vacuum pumps for manufacturing microchips, electronic components, and electronic devices. Vacuum pumps are crucial in processes such as physical vapor deposition (PVD), chemical vapor deposition (CVD), etching, ion implantation, and sputtering. These processes require controlled vacuum conditions to ensure precise deposition, surface modification, and contamination-free manufacturing.

4. Research and Development: Vacuum pump technology is integral to research and development activities across scientific disciplines. It supports experiments and investigations in fields such as physics, chemistry, materials science, biology, and environmental science. Vacuum pumps facilitate processes like freeze drying, vacuum distillation, vacuum evaporation, vacuum spectroscopy, and creating controlled atmospheric conditions for studying various phenomena.

5. Food and Beverage: The food and beverage industry relies on vacuum pumps for packaging and preservation purposes. Vacuum sealing is used to extend the shelf life of food products by removing air and creating a vacuum-sealed environment that inhibits spoilage and maintains freshness. Vacuum pumps are also used in processes like freeze drying, vacuum concentration, and vacuum cooling.

6. Oil and Gas: In the oil and gas industry, vacuum pumps play a role in various applications. They are used for crude oil vacuum distillation, vacuum drying, vapor recovery, gas compression, and gas stripping processes. Vacuum pumps help maintain optimal conditions during oil refining, gas processing, and petrochemical manufacturing.

7. Environmental and Waste Management: Vacuum pumps are employed in environmental and waste management applications. They are used for tasks such as soil vapor extraction, groundwater remediation, landfill gas recovery, and wastewater treatment. Vacuum pumps facilitate the removal and containment of gases, vapors, and pollutants, contributing to environmental protection and sustainable waste management.

8. Medical and Healthcare: The medical and healthcare sectors utilize vacuum pumps for various purposes. They are used in medical equipment such as vacuum-assisted wound therapy devices, vacuum-based laboratory analyzers, and vacuum suction systems in hospitals and clinics. Vacuum pumps are also used in medical research, pharmaceutical production, and medical device manufacturing.

9. Power Generation: Vacuum pumps play a role in power generation industries, including nuclear power plants and thermal power plants. They are used for steam condensation, turbine blade cooling, vacuum drying during transformer manufacturing, and vacuum systems for testing and maintenance of power plant equipment.

10. HVAC and Refrigeration: The HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries rely on vacuum pumps for system installation, maintenance, and repair. Vacuum pumps are used to evacuate air and moisture from refrigerant lines and HVAC systems, ensuring optimal system performance and efficiency.

These are just a few examples of industries that commonly rely on vacuum pump technology. The versatility and wide-ranging applications of vacuum pumps make them indispensable tools across numerous sectors, enabling precise control over vacuum conditions, efficient manufacturing processes, and scientific investigations.

China Standard Dual Vacuum Waste Water Electric Air Operated Diaphragm Pump   with Good quality China Standard Dual Vacuum Waste Water Electric Air Operated Diaphragm Pump   with Good quality
editor by Dream 2024-05-15

China wholesaler Water Cooled Dry Vacuum Pump for Laboratory, Oil and Gas Recovery and Other Applications vacuum pump connector

Product Description

We are looking for the agents from all over the world.
If you want to represent our products, welcome to contact me.
 

Product Description

Dry screw vacuum pump, is the use of a pair of screw, made in the pump shell synchronous high-speed reverse rotation of the effects of the suction and exhaust and suction device, 2 screw fine dynamic balancing correction, and is supported by bearings, is installed in the pump shell, between screw and screw has a certain gap, so the pump work, no friction between each other, smooth running, low noise, Working chamber without lubricating oil, therefore, dry screw pump can remove a lot of steam and a small amount of dust gas occasions, higher limit vacuum, lower power consumption, energy saving, maintenance-free and other advantages.Dry Oil-Free Air Cooling Screw Vacuum Pump ,This is an advanced and widely used vacuum pump at present, It is 1 of the best-selling products of our company.
 It adopts explosion-proof motor with high configuration, It has the characteristics of low noise, no oil and pollution, clean and high vacuum, simple and convenient use, operation and maintenance, Widely used in many industries, For example, oil and gas recovery, vacuum coating, biomedicine, food processing, single crystal furnace, vacuum forming, vacuum melting, electronic photovoltaic, semiconductor synthesis and many other industries are used.
The dry oil-free screw vacuum pump produced by our company is divided into air cooling and water cooling according to the extraction rate, and there are many models for you to choose.

Our Advantages

There is no medium in the working chamber, which can obtain a clean vacuum.
. No clearance between rotating parts, high speed operation, small overall volume.

There is no compression in the gas, suitable for extraction of coagulable gas.

Can remove a lot of steam and a small amount of dust gas occasions.
. High vacuum, the ultimate vacuum up to 1 Pa.

Screw material is high strength special material, material density, wear resistance, stable performance.

No friction rotating parts, low noise.
. Simple structure, convenient maintenance.
Wider range of use: corrosive environment can be used.

No oil consumption, no water.

Pump gas directly discharged from the pump body, no pollution of water, no environmental pressure, more convenient gas recovery.

It can be composed of oil-free unit with Roots pump and molecular pump.

 

Typical Use

——Oil and gas recovery.    ——Biological medicine ——Food Processing —— Single crystal furnace
——Vacuum forming ——Vacuum flame refining ——Electronic photovoltaic. ——Semiconductor synthesis

Product Parameters

Type                                                                             Basic parameters
Pumping speed
m3/h
Presure limit(Pa)  Power (kW)  revolution (rpm) Inlet caliber
mm
outlet caliber mm Cooling water volume
L/min
noise dB(A) Overall dimension
(length*width*height)
mm
LGV-180 180 5 4 2900 40 40 2 < 78 1157x375x734
LGV-250 250 5 5.5 2900 50 40 5.5 <78 1462x417x820
LGV-360 360 5 7.5 2900 50 40 4 W78 1462x455x820
LGV-540 540 5 11 2900 65 50 8 W80 1578x543x860
LGV-720 720 5 15 2900 80 65 10 <80 1623x562x916
LGV-1100 1100 5 22 2900 100 80 14 w 80 1866x598x1050
LG V-1800 1800 5 37 2900 150 100 20 w 80 2092×951 x 1150

Characteristic Curve

 

Detailed Photos

Vacuum pumps are used in oiling machines

General Manager Speech

Deeply cultivate the vacuum technology, and research,develop and manufacture the vacuum equipment to provide the best solution in the vacuum field and make the vacuum application easier.

Company Profile

ZheJiang Kaien Vacuum Technology Co., Ltd. is a high-tech enterprise integrating R & D, production and operation of vacuum equipment. The company has strong technical force, excellent equipment and considerate after-sales service. The product manufacturing process is managed in strict accordance with IS09001 quality system. It mainly produces and sells screw vacuum pump, roots pump, claw vacuum pump, runoff vacuum pump, scroll pump, water ring vacuum pump, vacuum unit and other vacuum systems.

 New plant plHangZhou

The company’s products have been for a number of food, medicine, refrigeration, drying plants and a number of transformer related equipment manufacturers for vacuum equipment. The products are widely used in vacuum drying and dehydration, kerosene vapor phase drying, vacuum impregnation, vacuum metallurgy, vacuum coating, vacuum evaporation, vacuum concentration, oil and gas recovery, etc.

 High precision machining equipment

The company cooperates with many scientific research institutions and universities, such as ZheJiang University, China University of petroleum, ZheJiang Institute of mechanical design, etc.with colleges and universities to research and develop core technologies, and owns dozens of independent intellectual property patents.Our technology is leading, the product quality is stable, the product has a good reputation in China’s domestic market, is sold all over the country, and is exported to Europe, America, Africa, the Middle East and Southeast Asia,We adhering to the basic tenet of quality, reputation and service, the company takes leading-edge technology of vacuum pump as its own responsibility, and wholeheartedly serves customers of vacuum equipment application in various industries with rigorous working attitude and professional working style.

    Product quality wins consumer cooperation

In shipment

ISO 9001

High tech enterprise certificate

  Welcome to send your needs, we will provide you with the best service,

provide the greatest help!!!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: One Year
Oil or Not: Oil Free
Structure: Screw
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Packaging?

Yes, vacuum pumps can be used for vacuum packaging. Here’s a detailed explanation:

Vacuum packaging is a method used to remove air from a package or container, creating a vacuum environment. This process helps to extend the shelf life of perishable products, prevent spoilage, and maintain product freshness. Vacuum pumps play a crucial role in achieving the desired vacuum level for effective packaging.

When it comes to vacuum packaging, there are primarily two types of vacuum pumps commonly used:

1. Single-Stage Vacuum Pumps: Single-stage vacuum pumps are commonly used for vacuum packaging applications. These pumps use a single rotating vane or piston to create a vacuum. They can achieve moderate vacuum levels suitable for most packaging requirements. Single-stage pumps are relatively simple in design, compact, and cost-effective.

2. Rotary Vane Vacuum Pumps: Rotary vane vacuum pumps are another popular choice for vacuum packaging. These pumps utilize multiple vanes mounted on a rotor to create a vacuum. They offer higher vacuum levels compared to single-stage pumps, making them suitable for applications that require deeper levels of vacuum. Rotary vane pumps are known for their reliability, consistent performance, and durability.

When using vacuum pumps for vacuum packaging, the following steps are typically involved:

1. Preparation: Ensure that the packaging material, such as vacuum bags or containers, is suitable for vacuum packaging and can withstand the vacuum pressure without leakage. Place the product to be packaged inside the appropriate packaging material.

2. Sealing: Properly seal the packaging material, either by heat sealing or using specialized vacuum sealing equipment. This ensures an airtight enclosure for the product.

3. Vacuum Pump Operation: Connect the vacuum pump to the packaging equipment or directly to the packaging material. Start the vacuum pump to initiate the vacuuming process. The pump will remove the air from the packaging, creating a vacuum environment.

4. Vacuum Level Control: Monitor the vacuum level during the packaging process using pressure gauges or vacuum sensors. Depending on the specific packaging requirements, adjust the vacuum level accordingly. The goal is to achieve the desired vacuum level suitable for the product being packaged.

5. Sealing and Closure: Once the desired vacuum level is reached, seal the packaging material completely to maintain the vacuum environment. This can be done by heat sealing the packaging material or using specialized sealing mechanisms designed for vacuum packaging.

6. Product Labeling and Storage: After sealing, label the packaged product as necessary and store it appropriately, considering factors such as temperature, humidity, and light exposure, to maximize product shelf life.

It’s important to note that the specific vacuum level required for vacuum packaging may vary depending on the product being packaged. Some products may require a partial vacuum, while others may require a more stringent vacuum level. The choice of vacuum pump and the control mechanisms employed will depend on the specific vacuum packaging requirements.

Vacuum pumps are widely used in various industries for vacuum packaging applications, including food and beverage, pharmaceuticals, electronics, and more. They provide an efficient and reliable means of creating a vacuum environment, helping to preserve product quality and extend shelf life.

vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China wholesaler Water Cooled Dry Vacuum Pump for Laboratory, Oil and Gas Recovery and Other Applications   vacuum pump connector	China wholesaler Water Cooled Dry Vacuum Pump for Laboratory, Oil and Gas Recovery and Other Applications   vacuum pump connector
editor by Dream 2024-05-15

China Professional Water Circulating Diaphragm Vacuum Pump vacuum pump electric

Product Description

CHARACTERISTICS OF USE

  • Be suitable for the research experiment, small scale test and small scale production process which have the processes such as evaporation, distillation, crystallization, drying, sublimation, filtration and decompression, degassing.
  • The operation principle is the same as that of desk-top type pump.
  • Compared with the desk-top type pump, the bleed air flow is more, which applies to the vacuum demands with large bleed air flow.
  • Five taps can be used alone or in parallel. The bleed air flow is large with five-way pipe iin parallel, which can meet the demand of large scale Rotary Evaporator or Reaction Kettle.
  • The special machine is made by the famous electric manufacture ODM with fluorine rubber sealing, the inner of which can’t be intruded by corrosive gas.
  • The body of the flume adopts polyvinyl chloride (PVC) material, the casing adopts carbon constructional quality steel cold rolling plate and the surface adopts electrostatic spraying.
  • Ejector with copper material, tee junction, back valve and gas-extraction nozzle adopt the PP material.
  • The pump body and impeller adopt stainless steel plate pressing (SUS standard).
  • Be furnished with truckles, which is convenient for moving and is suitable for the flexible configuration in labs and workshops.
  • Need to replace the water in the flume regularly to ensure the purity of water quality, the vacuum degree and to avoid dirt stains.
  • Can be used to extract corrosive gas, need to shorten the period of water changing.
  • VP-B95A: the casing adopts stainless steel material (SUS standard), the rest is the same as VP-B95.

VP-95T

  • Multi-purpose Vacuum Pump adopts the latest technology to make the service life longer, antiseptic property better and more reliable.
  • Based on VP-B95A type, the function and basic material are the same as those of VP-B95A type.
  • Spray paint Teflon (PTFE)on the ejector and gas-extraction nozzle, gas pipeline adopts fluorine rubber material.

SPECIFICATIONS

Model VP-B95T VP-B95 VP-B95A
Power (W) 550 550
Power supply  (V/Hz) 220/50 220/50
Flow (L/min) 100 100
Lift  (m) 12 12
Safety functions Check valve Check valve
Materials Of Machine Casing 304 Static electricity spray 304 SS
Maximum Vacuum Degree  (MPa) 0.098 0.098
Single Tap Air Sucking Amount (L/min) 10 10
Number of Taps (A) 5 5
Capacity of Water Storage Tank (L) 57 57
Materials of Water Tank Polyvinyl chloride Polyvinyl chloride
Dimensions (mm) 450L×350W×820H 450L×350W×820H 450L×350W×820H
Weight  (kg) 36 36 36

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Free Spare Parts
Warranty: 1 Year
Application: Industry, School, Hospital, Lab
Customized: Customized
Certification: CE, ISO
Structure: Desktop
Customization:
Available

|

diaphragm vane pump

What safety features are typically integrated into diaphragm vacuum pump systems?

Diaphragm vacuum pump systems typically incorporate various safety features to ensure safe operation and protect both the users and the equipment. Here’s a detailed explanation:

1. Overpressure Protection: Diaphragm vacuum pump systems often include overpressure protection mechanisms to prevent excessive pressure buildup. These mechanisms can be in the form of pressure relief valves or pressure sensors that automatically shut off the pump or release excess pressure if it exceeds the predefined limits. Overpressure protection safeguards the system from potential damage and reduces the risk of accidents or equipment failure.

2. Thermal Protection: Thermal protection features are designed to prevent the pump from overheating. Diaphragm pumps can generate heat during operation, especially in continuous or intensive use. Thermal protection mechanisms, such as thermal switches or temperature sensors, monitor the pump’s temperature and automatically shut it down or activate cooling systems if the temperature exceeds safe limits. This helps prevent damage to the pump and reduces the risk of fire or other safety hazards.

3. Leak Detection: Diaphragm vacuum pump systems may incorporate leak detection mechanisms to alert users in case of any air or gas leakage. These mechanisms can include pressure sensors or flow sensors that monitor the system’s integrity. If a leak is detected, visual or audible alarms may be triggered, indicating the need for immediate attention and repair to maintain the system’s efficiency and prevent the release of potentially harmful substances into the environment.

4. Electrical Safety: Diaphragm pump systems have electrical safety features to protect against electrical hazards. This includes measures such as ground fault circuit interrupters (GFCI) or residual current devices (RCD) that detect and interrupt electrical faults, preventing electric shocks or short circuits. Proper grounding and insulation of electrical components are also important safety considerations in diaphragm pump systems.

5. Emergency Stop: Many diaphragm pump systems are equipped with an emergency stop button or switch that allows users to quickly shut down the pump in case of an emergency or hazardous situation. The emergency stop feature provides a convenient and immediate means to halt pump operation, ensuring the safety of the users and preventing further risks or damages.

6. System Monitoring and Alarms: Advanced diaphragm pump systems may incorporate monitoring features that continuously assess the system’s performance and provide real-time feedback. This can include monitoring parameters such as vacuum levels, temperature, pressure, or flow rates. Alarms or visual indicators are often integrated to alert users in case of deviations from normal operating conditions, enabling prompt corrective actions and preventing potential safety issues.

It’s important to note that the specific safety features integrated into diaphragm vacuum pump systems may vary depending on the manufacturer, model, and intended application. Users should carefully review the product documentation and follow the manufacturer’s instructions regarding safety precautions, installation requirements, and maintenance procedures to ensure safe and proper use of the equipment.

In summary, diaphragm vacuum pump systems typically incorporate safety features such as overpressure protection, thermal protection, leak detection, electrical safety measures, emergency stop functionalities, and system monitoring with alarms. These safety features aim to protect users, prevent equipment damage, and ensure the safe and reliable operation of the diaphragm pump system.

diaphragm vane pump

Are there variations in diaphragm vacuum pump designs, and how do they affect performance?

Yes, there are variations in diaphragm vacuum pump designs, and these variations can affect the performance of the pumps. Here’s a detailed explanation:

Diaphragm vacuum pumps are available in different designs and configurations to meet specific application requirements. The design variations can impact several aspects of the pump’s performance, including:

Pump Construction: Diaphragm vacuum pumps can have single or multiple diaphragms. Single diaphragm pumps typically offer a compact and lightweight design, making them suitable for portable applications. Multiple diaphragm pumps, on the other hand, provide higher flow rates and enhanced performance for applications that require greater pumping capacity.

Materials of Construction: Diaphragm pumps can be constructed using various materials, including metals, plastics, and elastomers. The choice of materials affects the pump’s chemical compatibility, resistance to corrosion or abrasion, and overall durability. Selecting the appropriate materials is crucial to ensure reliable pump performance in specific operating conditions.

Valve Design: The valves in diaphragm vacuum pumps play a critical role in controlling the direction of air flow and maintaining efficient pumping. Variations in valve design, such as the type of valves used (e.g., flapper valves, reed valves) and their configuration, can impact the pump’s suction capacity, vacuum level, and overall efficiency.

Sealing Mechanisms: Diaphragm pumps employ various sealing mechanisms to ensure airtight operation and prevent air leakage. The sealing mechanisms can differ in terms of design, materials used, and effectiveness. Well-designed sealing mechanisms are necessary to maintain a consistent vacuum level and prevent loss of suction during operation.

Control Features: Advanced diaphragm vacuum pumps may incorporate control features such as variable speed drives, pressure sensors, or automated systems for monitoring and adjusting pump performance. These control features can improve the pump’s efficiency, optimize energy consumption, and provide greater control over vacuum levels and flow rates.

The specific design variations in diaphragm vacuum pumps are often tailored to meet different application requirements, such as laboratory research, medical devices, or industrial processes. Therefore, it’s essential to consider the intended application and select a pump design that aligns with the desired performance parameters.

In summary, diaphragm vacuum pumps come in various designs and configurations that can impact their performance. Factors such as pump construction, materials of construction, valve design, sealing mechanisms, and control features all contribute to the overall efficiency, reliability, and suitability of the pump for specific applications.

diaphragm vane pump

What is a diaphragm vacuum pump, and how does it operate?

A diaphragm vacuum pump is a type of positive displacement pump used to create vacuum or low-pressure conditions in various applications. Here’s a detailed explanation of its operation:

Overview:

A diaphragm vacuum pump consists of a flexible diaphragm that moves back and forth within a chamber. As the diaphragm flexes, it creates changes in the volume of the chamber, resulting in the suction and expulsion of gas. The diaphragm is typically made of a durable, chemically resistant material such as rubber or elastomer.

Operation:

The operation of a diaphragm vacuum pump typically involves the following steps:

1. Suction Phase: The diaphragm starts in a neutral position. When the pump is powered on, the diaphragm is pulled downward by the negative pressure within the chamber. This expansion of the chamber volume creates suction, drawing gas or vapor into the pump through the inlet valve or port.

2. Compression Phase: Once the diaphragm reaches its maximum downward position, the inlet valve closes to prevent backflow. The diaphragm then starts to move upward, reducing the volume of the chamber. This compression action causes the gas to be expelled through the outlet valve or port.

3. Exhaust Phase: As the diaphragm continues to move upward, the outlet valve closes, and the compressed gas is discharged from the pump. The diaphragm returns to its neutral position, ready for the next suction phase.

Features and Advantages:

Diaphragm vacuum pumps offer several features and advantages that make them suitable for various applications:

No Contamination: Diaphragm pumps are designed to be oil-free and have a sealed pumping chamber. This eliminates the risk of oil contamination of the pumped gas or vapor, making them suitable for applications requiring clean and uncontaminated vacuum conditions, such as laboratory work or medical applications.

Chemical Resistance: The diaphragm is typically made of chemically resistant materials, allowing the pump to handle corrosive or reactive gases without degradation or contamination.

Gentle Operation: The pumping action of diaphragm pumps is gentle and pulsation-free, making them suitable for applications that require precise control or sensitive handling of gases or delicate samples.

Quiet Operation: Diaphragm pumps are known for their quiet operation, reducing noise pollution in the working environment.

Self-Priming: Diaphragm pumps are generally self-priming, meaning they can start and maintain their pumping action without the need for external priming or additional equipment.

Compact and Portable: Diaphragm pumps are often compact and lightweight, allowing for easy installation and portability. They can be used as standalone units or integrated into larger systems.

Applications:

Diaphragm vacuum pumps find applications in various industries and fields, including:

– Laboratory research and analysis

– Medical and healthcare

– Environmental monitoring and analysis

– Vacuum filtration

– Vacuum drying and degassing

– Automotive and manufacturing processes

– Semiconductor and electronics manufacturing

It is important to note that the specific design and operation of diaphragm vacuum pumps may vary across different manufacturers and models. Consulting the manufacturer’s specifications and guidelines is recommended for detailed information on the operation, performance, and suitability of a particular diaphragm pump for a given application.

By utilizing the flexible diaphragm’s movement to create suction and compression, diaphragm vacuum pumps offer reliable and efficient vacuum generation for a wide range of applications.

China Professional Water Circulating Diaphragm Vacuum Pump   vacuum pump electricChina Professional Water Circulating Diaphragm Vacuum Pump   vacuum pump electric
editor by Dream 2024-05-15

China manufacturer Boosters Roots Rotary Van Piston Pump Replace 5.5kw Single Double Stage Water Ring Vacuum Pump a/c vacuum pump

Product Description

2BV liquid ring vacuum pump is single-stage monobloc design vacuum pump. It offers Space-saving installation, compared to conventional pumps, the 2BV’s monoblock design delivers the benefits of a simple, compact and economical installation. Since the pump and motor are integral and self supporting, there is no need for additional base plates, couplings or guards, which add to the cost, complexity and overall size of the installation. With CE and Atex certificate, it is an ideal product for much different application including Plastics Industry, Medical Industry, Chemical Industry, Processing Industry, Food and Beverage Industry and other General Industry.

We offer same outline dimensions for bolt-on replacement and equivalent performances with original 2BV liquid ring vacuum pump.

ITEM

UNIT

Quantity

Supply Ability

per month

2,000set

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 1 Year
Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Samples:
US$ 10000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Vacuum Pump

Basic knowledge of vacuum pump

A vacuum pump is a device that draws gas molecules from a sealed volume and maintains a partial vacuum. Its main job is to create a relative vacuum within a given volume or volumes. There are many types of vacuum pumps. This article will describe how they work, their types, and their applications.

How it works

A vacuum pump is a mechanical device that removes gas from a system by applying it to a higher pressure than the surrounding atmosphere. The working principle of the vacuum pump is based on the principle of gas transfer and entrapment. Vacuum pumps can be classified according to their vacuum level and the number of molecules that can be removed per cubic centimeter of space. In medium to high vacuum, viscous flow occurs when gas molecules collide with each other. Increasing the vacuum causes molecular or transitional flow.
A vacuum pump has several components that make it a versatile tool. One of the main components is the motor, which consists of a rotor and a stator. The rotor and stator contain coils that generate a magnetic field when excited. Both parts must be mounted on a base that supports the weight of the pump. There is also an oil drain that circulates oil throughout the system for lubrication and cooling purposes.
Another type of vacuum pump is the liquid ring vacuum pump. It works by positioning the impeller above or below the blades. Liquid ring pumps can also adjust the speed of the impeller. However, if you plan to use this type of pump, it is advisable to consult a specialist.
Vacuum pumps work by moving gas molecules to areas of higher or lower pressure. As the pressure decreases, the removal of the molecules becomes more difficult. Industrial vacuum systems require pumps capable of operating in the 1 to 10-6 Torr range.

Type

There are different types of vacuum pumps. They are used in many different applications, such as laboratories. The main purpose of these pumps is to remove air or gas molecules from the vacuum chamber. Different types of pumps use different techniques to achieve this. Some types of pumps use positive displacement, while others use liquid ring, molecular transfer, and entrapment techniques.
Some of these pumps are used in industrial processes, including making vacuum tubes, CRTs, electric lights, and semiconductor processing. They are also used in motor vehicles to power hydraulic components and aircraft. The gyroscope is usually controlled by these pumps. In some cases, they are also used in medical settings.
How a vacuum pump works depends on the type of gas being pumped. There are three main types: positive displacement, negative displacement, and momentum transfer. Depending on the type of lubrication, these principles can be further divided into different types of pumps. For example, dry vacuum pumps are less sensitive to gases and vapors.
Another type of vacuum pump is called a rotary vane pump. This type of pump has two main components, the rotor and the vacuum chamber. These pumps work by rotating moving parts against the pump casing. The mating surfaces of rotary pumps are designed with very small clearances to prevent fluid leakage to the low pressure side. They are suitable for vacuum applications requiring low pulsation and high continuous flow. However, they are not suitable for use with grinding media.
There are many types of vacuum pumps and it is important to choose the right one for your application. The type of pump depends on the needs and purpose of the system. The larger ones can work continuously, and the smaller ones are more suitable for intermittent use.
Vacuum Pump

Apply

Vacuum pumps are used in a variety of industrial and scientific processes. For example, they are used in the production of vacuum tubes, CRTs, and electric lamps. They are also used in semiconductor processing. Vacuum pumps are also used as mechanical supports for other equipment. For example, there may be multiple vacuum pumps on the engine of a motor vehicle that powers the hydraulic components of an aircraft. In addition, they are often used in fusion research.
The most common type of vacuum pump used in the laboratory is the rotary vane pump. It works by directing airflow through a series of rotating blades in a circular housing. As the blades pass through the casing, they remove gas from the cavity and create a vacuum. Rotary pumps are usually single or double-stage and can handle pressures between 10 and 6 bar. It also has a high pumping speed.
Vacuum pumps are also used to fabricate solar cells on wafers. This involves a range of processes including doping, diffusion, dry etching, plasma-enhanced chemical vapor deposition, and bulk powder generation. These applications depend on the type of vacuum pump used in the process, and the vacuum pump chosen should be designed for the environment.
While there are several types of vacuum pumps available, their basic working principles remain the same. Each has different functions and capacities, depending on the type of vacuum. Generally divided into positive displacement pump, rotary vane pump, liquid ring pump, and molecular delivery pump.

Maintenance

The party responsible for general maintenance and repairs is the Principal Investigator (PI). Agknxs must be followed and approved by the PI and other relevant laboratory personnel. The Agknx provides guidelines for routine maintenance of vacuum pump equipment. Agknxs are not intended to replace detailed routine inspections of vacuum pump equipment, which should be performed by certified/qualified service personnel. If the device fails, the user should contact PI or RP for assistance.
First, check the vacuum pump for any loose parts. Make sure the inlet and outlet pressure gauges are open. When the proper pressure is shown, open the gate valve. Also, check the vacuum pump head and flow. Flow and head should be within the range indicated on the label. Bearing temperature should be within 35°F and maximum temperature should not exceed 80°F. The vacuum pump bushing should be replaced when it is severely worn.
If the vacuum pump has experienced several abnormal operating conditions, a performance test should be performed. Results should be compared to reference values ​​to identify abnormalities. To avoid premature pump failure, a systematic approach to predictive maintenance is essential. This is a relatively new area in the semiconductor industry, but leading semiconductor companies and major vacuum pump suppliers have yet to develop a consistent approach.
A simplified pump-down test method is proposed to evaluate the performance of vacuum pumps. The method includes simulated aeration field tests and four pump performance indicators. Performance metrics are evaluated under gas-loaded, idle, and gas-load-dependent test conditions.
Vacuum Pump

Cost

The total cost of a vacuum pump consists of two main components: the initial investment and ongoing maintenance costs. The latter is the most expensive component, as it consumes about four to five times the initial investment. Therefore, choosing a more energy-efficient model is a good way to reduce the total system cost and payback period.
The initial cost of a vacuum pump is about $786. Oil-lubricated rotary vane pumps are the cheapest, while oil-free rotary vane pumps are slightly more expensive. Non-contact pumps also cost slightly more. The cost of a vacuum pump is not high, but it is a factor that needs careful consideration.
When choosing a vacuum pump, it is important to consider the type of gas being pumped. Some pumps are only suitable for pumping air, while others are designed to pump helium. Oil-free air has a different pumping rate profile than air. Therefore, you need to consider the characteristics of the medium to ensure that the pump meets your requirements. The cost of a vacuum pump can be much higher than the purchase price, as the daily running and maintenance costs can be much higher.
Lubricated vacuum pumps tend to be more durable and less expensive, but they may require more maintenance. Maintenance costs will depend on the type of gas that needs to be pumped. Lighter gases need to be pumped slowly, while heavier gases need to be pumped faster. The maintenance level of a vacuum pump also depends on how often it needs to be lubricated.
Diaphragm vacuum pumps require regular maintenance and oil changes. The oil in the diaphragm pump should be changed every 3000 hours of use. The pump is also resistant to chemicals and corrosion. Therefore, it can be used in acidic and viscous products.

China manufacturer Boosters Roots Rotary Van Piston Pump Replace 5.5kw Single Double Stage Water Ring Vacuum Pump   a/c vacuum pump		China manufacturer Boosters Roots Rotary Van Piston Pump Replace 5.5kw Single Double Stage Water Ring Vacuum Pump   a/c vacuum pump
editor by Dream 2024-05-14

China Good quality Automatic Pressurizing Boosting Bathroom Water Pump vacuum pump distributors

Product Description

Automatic Pressurizing Boosting bathroom water pump 

Applications
For boosting pressure for family tap water, fire fighting apparatus,
Water heaters, industrial equipments.
For sending water to high building.
For increasing oxygen for rearing ponds and fish tanks.
 

Introduction

household booster pump hot water,used in domestic water such as solar water supply,family heaters,withhigh quality and excellent performance.

 

Advantages
Low noise 
No leakage
Low energy consumption, 
Easy installation
Environment friendly 

 

Material and working limits

Pump body : Brass

Impeller : Brass

Motor shell: Stainless steel

Motor wire: Copper

Mechanical seal : Ceramic & Graphite

Shaft : Stainless steel(iron)

Bearing : China

Insulation class: B

Protection class: IP44

Max. operating pressure: 10bar

Voltage :  220V/50Hz
Power : 120W 180W 300W 
Head :     12m  18m  28m

 

 

Performance data
 

MODEL A(mm) B(mm) C(mm) D(mm) E(mm) F(mm) G(mm) H(mm) I(mm)
15G-10 98 M26 M26 85 70 53 76 176 78
15G-15 110 M26 M26 87 84 77 100 190 100

 

MODEL Power
(W)
Vollage
(V)
Frequency
(Hz)
Speed
(r/min)
Input&Outlet Dia.(mm) Max.head
(m)
Rated.Head
(m)
Max.Flow
(L/min)
Rated Flow
(L/min)
G.W
(kg)
Q’ty
(pcs)
DIMENSION
(cm)
L W H
15G-10 90 220-240 50 2860 15 10 6 20 8 26 8 42.8 32 27.5
15G-15 120 220-240 50 2860 15 15 10 25 10 17 4 30.5 24.5 32.5

Details

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24hrs on Line
Warranty: 1 Year Waranty
Max.Head: 10-30m
Max.Capacity: <50 L/min
Driving Type: Motor
Material: Stainless Steel
Customization:
Available

|

diaphragm vane pump

Can diaphragm vacuum pumps be integrated into existing laboratory setups and industrial processes?

Yes, diaphragm vacuum pumps can be integrated into existing laboratory setups and industrial processes. Here’s a detailed explanation:

Laboratory Setups: Diaphragm vacuum pumps are commonly used in laboratory environments for various applications, including filtration, aspiration, degassing, desiccation, and vacuum drying. They can be easily integrated into existing laboratory setups due to their compact size, versatility, and compatibility with a wide range of laboratory equipment.

Diaphragm vacuum pumps can connect to laboratory apparatus such as filtration systems, rotary evaporators, vacuum ovens, and vacuum desiccators. They often feature standard connections, such as hose barbs or quick-connect fittings, that allow for easy and secure attachment to different laboratory devices. In many cases, diaphragm vacuum pumps can directly replace other types of vacuum pumps without requiring significant modifications to the existing setup.

The ability to integrate diaphragm vacuum pumps into laboratory setups offers advantages such as:

Oil-Free Operation: Diaphragm pumps do not require oil lubrication, eliminating the risk of oil contamination in the laboratory setup and reducing maintenance requirements.

Quiet Operation: Diaphragm pumps are known for their relatively quiet operation, making them suitable for laboratory environments where noise reduction is desirable.

Chemical Compatibility: Diaphragm pumps are available in models constructed with chemically resistant materials, allowing them to handle a wide range of solvents, gases, and vapors encountered in laboratory processes.

Industrial Processes: Diaphragm vacuum pumps can also be integrated into various industrial processes. They find applications in industries such as pharmaceuticals, food and beverage, electronics, automotive, and materials processing.

In industrial settings, diaphragm vacuum pumps can be used for tasks such as vacuum packaging, degassing, solvent recovery, pneumatic conveying, and vacuum drying. They can be incorporated into existing process lines and equipment, providing the necessary vacuum levels and performance required for the specific application.

Diaphragm vacuum pumps offer advantages in industrial processes, including:

Reliable Performance: Diaphragm pumps are known for their reliable operation, providing consistent vacuum levels and performance over time.

Energy Efficiency: Diaphragm pumps can be designed to be energy-efficient, contributing to cost savings and sustainability in industrial operations.

Low Maintenance: Diaphragm pumps generally have low maintenance requirements compared to other types of vacuum pumps, reducing downtime and operating costs.

When integrating diaphragm vacuum pumps into laboratory or industrial setups, it’s important to consider factors such as the required vacuum level, flow rate, compatibility with existing equipment, and any specific environmental or safety considerations. Additionally, consulting the manufacturer’s guidelines and seeking expert advice can ensure proper integration and optimal performance.

In summary, diaphragm vacuum pumps can be easily integrated into existing laboratory setups and industrial processes. Their compact size, versatility, oil-free operation, chemical compatibility, and reliable performance make them suitable for a wide range of applications. Whether in laboratory or industrial settings, diaphragm vacuum pumps offer advantages such as quiet operation, energy efficiency, and low maintenance requirements.

diaphragm vane pump

What is the noise level produced by diaphragm vacuum pumps during operation?

The noise level produced by diaphragm vacuum pumps during operation can vary depending on factors such as pump design, size, and operating conditions. Here’s a detailed explanation:

Diaphragm vacuum pumps are generally known for their relatively quiet operation compared to other types of vacuum pumps. The noise level produced by diaphragm pumps is typically lower than that of oil-sealed rotary vane pumps or piston pumps.

The noise level is influenced by various factors, including:

Pump Design: The design of the diaphragm pump can affect the noise level. Some pumps are specifically engineered to minimize noise by incorporating features such as noise-reducing materials, vibration dampening mechanisms, or sound insulation.

Pump Size and Power: Larger diaphragm pumps may generate more noise compared to smaller ones due to increased air displacement and higher power requirements. It’s important to consider the specific size and power rating of the pump when evaluating its noise level.

Operating Conditions: The noise level can also be influenced by the operating conditions of the diaphragm pump. Factors such as speed, temperature, and the presence of vibrations or resonances in the system can impact the overall noise output.

While diaphragm vacuum pumps are generally considered to have low noise levels, it’s important to note that individual pump models may have different noise specifications. Manufacturers often provide noise level data in the pump’s technical documentation, which can help in selecting a pump that meets specific noise requirements.

Additionally, it’s worth considering noise reduction measures such as using vibration isolation pads, enclosing the pump in a soundproof housing, or employing remote mounting techniques to further minimize any noise generated by the pump.

In summary, diaphragm vacuum pumps are known for their relatively quiet operation compared to other types of vacuum pumps. However, the actual noise level produced can vary depending on factors such as pump design, size, and operating conditions. Consulting the manufacturer’s specifications and implementing noise reduction measures can help ensure a suitable noise level for the intended application.

diaphragm vane pump

What are the advantages of using diaphragm vacuum pumps in various applications?

Diaphragm vacuum pumps offer several advantages that make them well-suited for various applications. Here’s a detailed explanation of the advantages:

1. Oil-Free and Contamination-Free Operation:

Diaphragm vacuum pumps are designed to be oil-free, meaning they do not require lubricating oil for operation. This eliminates the risk of oil contamination in the pumped gas or vapor, making them ideal for applications that require clean and uncontaminated vacuum conditions. Industries such as laboratory research, medical and healthcare, and semiconductor manufacturing benefit from the oil-free operation of diaphragm pumps.

2. Chemical Resistance:

Diaphragm pumps are typically constructed with materials that offer excellent chemical resistance. The diaphragm, valves, and other wetted parts are often made of chemically resistant materials such as rubber or elastomer. This allows diaphragm vacuum pumps to handle corrosive or reactive gases without degradation or contamination, making them suitable for applications in chemical processing, environmental monitoring, and analytical laboratories.

3. Gentle and Pulsation-Free Operation:

Diaphragm pumps provide a gentle pumping action that is free from pulsations. This characteristic is particularly advantageous in applications that require precise control or sensitive handling of gases or delicate samples. Examples include vacuum filtration, vacuum drying, degassing processes, and laboratory applications where consistent and smooth vacuum conditions are necessary.

4. Quiet Operation:

Diaphragm vacuum pumps are known for their quiet operation compared to other types of pumps. The reduced noise level contributes to a more comfortable working environment, making them suitable for applications where noise pollution needs to be minimized, such as laboratories, medical facilities, and research institutions.

5. Self-Priming Capability:

Diaphragm pumps are generally self-priming, meaning they can start and maintain their pumping action without the need for external priming or additional equipment. This makes them easy to use and convenient, especially in applications where frequent start-stop cycles or intermittent operation is required.

6. Compact and Portable:

Diaphragm vacuum pumps are often compact and lightweight, making them easy to install, move, or transport. Their compact size allows for flexible integration into existing systems or placement in confined spaces. The portability of diaphragm pumps is advantageous in applications that require mobility or where multiple pumping stations are needed in different locations.

7. Versatile Applications:

Diaphragm vacuum pumps find applications in a wide range of industries and fields. Some common applications include:

– Laboratory research and analysis

– Medical and healthcare

– Environmental monitoring and analysis

– Vacuum filtration

– Vacuum drying and degassing

– Automotive and manufacturing processes

– Semiconductor and electronics manufacturing

It’s important to note that the specific advantages of using diaphragm vacuum pumps can vary depending on the pump design, model, and application requirements. Manufacturers provide detailed specifications and guidelines that highlight the advantages and limitations of their diaphragm pumps for specific applications.

China Good quality Automatic Pressurizing Boosting Bathroom Water Pump   vacuum pump distributorsChina Good quality Automatic Pressurizing Boosting Bathroom Water Pump   vacuum pump distributors
editor by Dream 2024-05-13

China OEM 2bec Series Liquid Water Ring Vacuum Pump and Compressor for Mining, Paper Making, Coal Washing and Power Plant vacuum pump connector

Product Description

Brief introduction:

2BEC series water ring vacuum pump CHINAMFG single function, distribution plate and impeller adopt optimal design, with friction-free surface, no lubricating oil, compact structure, reliable operation, easy to use and maintain, wide selection range, simple structure and easy maintenance.It is mainly used for pumping gas without particles. The working medium is clean water at room temperature. Acid, alkali and other media can also be used as working liquid for special requirements.

Parameters:

Gas range:  4.8—-450m3/min

Limit vacuum degree: 33hpa—-160hpa

Efficiency:  40—-65%

Features:

1.Single stage, single function, optimized design of distribution plate and impeller, high efficiency, simple structure and easy maintenance.

2.The flexible valve plate automatically adjusts the exhaust Angle, so that the pump can operate efficiently under different suction conditions.

3.The impeller end face adopts grading design, which reduces the sensitivity of the pump to dust and water scale formation in the medium.

4. Packing gland is divided into half structure, more convenient to replace packing.

5. Small size pump, with packing and mechanical seal 2 types of shaft seal.

6. Rotor with impeller diameter greater than 200mm, shaft sealing position is equipped with shaft sleeve to protect shaft wear.

7. Improved bearing structure, large axial and radial bearing capacity, accurate positioning, to ensure reliable operation of the pump.

8. Equipped with heat exchanger to realize working liquid circulation, reduce water consumption, no need to set additional booster.

9. When installed with cavitation prevention device, the cavitation resistance of pump running under higher vacuum can be improved effectively.

10. Adopt specially designed steam separator to separate, effectively reduce resistance and reduce noise.

11.The smooth surface of the flow component can effectively reduce the precipitation and reduce the scaling process.

12. Wide suction range, with a stage injector, suction pressure can be lower than 33hpa.

Structure:
 

1. The only rotating part of 2BEA/2BEC —- impeller makes the working fluid form hydraulic pressure in the oval pump body by rotating.At this time, the working fluid plays 3 roles of sealing medium, compression medium and cooling medium at the same time, without wear and lubrication.

2. In the exhaust stage, the liquid ring gradually approaches the hub, and the pumping medium is discharged from the exhaust port along the axial direction.

3. Continuous injection of supplementary liquid to compensate for the liquid taken away by the exhaust gas.

4. In the suction stage, the liquid ring is gradually away from the hub, and the pumping medium is sucked axially from the suction port.

5. Because the impeller is eccentric with respect to the rotating liquid ring, the liquid reciprocates in the space between the blades, —— just like the movement of the piston in the cylinder, —— produces axial suction and compression on the pumping medium.

It operates at 2 vacuum levels

When fitted with an intermediate separator, the left and right parts of the 2BEC pump body can operate at different vacuum levels.As long as the suction pressure difference between the 2 parts (A to B) is less than 80 kPa, A 2BEC can be used as 2 independent vacuum pumps.This feature further enhances the operational flexibility of 2BEC.This flexible solution minimizes energy consumption and footprint in applications that require both vacuum levels.Because the 2BEC was designed with the possibility of long term operation under large differential pressures in mind, its reliability under these operating conditions is not diminished at all.

Configuration:

Application:

2BEN series water ring vacuum pumps are widely used in petrochemical, pharmaceutical, food, sugar industry and other fields. Because the gas compression process is isothermal during the working process, it is not easy to compress and pump flammable and explosive gases. It is dangerous and its application is more extensive.

Performance:

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

What Is the Vacuum Level and How Is It Measured in Vacuum Pumps?

The vacuum level refers to the degree of pressure below atmospheric pressure in a vacuum system. It indicates the level of “emptiness” or the absence of gas molecules in the system. Here’s a detailed explanation of vacuum level measurement in vacuum pumps:

Vacuum level is typically measured using pressure units that represent the difference between the pressure in the vacuum system and atmospheric pressure. The most common unit of measurement for vacuum level is the Pascal (Pa), which is the SI unit. Other commonly used units include Torr, millibar (mbar), and inches of mercury (inHg).

Vacuum pumps are equipped with pressure sensors or gauges that measure the pressure within the vacuum system. These gauges are specifically designed to measure the low pressures encountered in vacuum applications. There are several types of pressure gauges used for measuring vacuum levels:

1. Pirani Gauge: Pirani gauges operate based on the thermal conductivity of gases. They consist of a heated element exposed to the vacuum environment. As gas molecules collide with the heated element, they transfer heat away, causing a change in temperature. By measuring the change in temperature, the pressure can be inferred, allowing the determination of the vacuum level.

2. Thermocouple Gauge: Thermocouple gauges utilize the thermal conductivity of gases similar to Pirani gauges. They consist of two dissimilar metal wires joined together, forming a thermocouple. As gas molecules collide with the thermocouple, they cause a temperature difference between the wires, generating a voltage. The voltage is proportional to the pressure and can be calibrated to provide a reading of the vacuum level.

3. Capacitance Manometer: Capacitance manometers measure pressure by detecting the change in capacitance between two electrodes caused by the deflection of a flexible diaphragm. As the pressure in the vacuum system changes, the diaphragm moves, altering the capacitance and providing a measurement of the vacuum level.

4. Ionization Gauge: Ionization gauges operate by ionizing gas molecules in the vacuum system and measuring the resulting electrical current. The ion current is proportional to the pressure, allowing the determination of the vacuum level. There are different types of ionization gauges, such as hot cathode, cold cathode, and Bayard-Alpert gauges.

5. Baratron Gauge: Baratron gauges utilize the principle of capacitance manometry but with a different design. They consist of a pressure-sensing diaphragm separated by a small gap from a reference electrode. The pressure difference between the vacuum system and the reference electrode causes the diaphragm to deflect, changing the capacitance and providing a measurement of the vacuum level.

It’s important to note that different types of vacuum pumps may have different pressure ranges and may require specific pressure gauges suitable for their operating conditions. Additionally, vacuum pumps are often equipped with multiple gauges to provide information about the pressure at different stages of the pumping process or in different parts of the system.

In summary, vacuum level refers to the pressure below atmospheric pressure in a vacuum system. It is measured using pressure gauges specifically designed for low-pressure environments. Common types of pressure gauges used in vacuum pumps include Pirani gauges, thermocouple gauges, capacitance manometers, ionization gauges, and Baratron gauges.

\vacuum pump

Considerations for Selecting a Vacuum Pump for Cleanroom Applications

When it comes to selecting a vacuum pump for cleanroom applications, several considerations should be taken into account. Here’s a detailed explanation:

Cleanrooms are controlled environments used in industries such as semiconductor manufacturing, pharmaceuticals, biotechnology, and microelectronics. These environments require strict adherence to cleanliness and particle control standards to prevent contamination of sensitive processes or products. Selecting the right vacuum pump for cleanroom applications is crucial to maintain the required level of cleanliness and minimize the introduction of contaminants. Here are some key considerations:

1. Cleanliness: The cleanliness of the vacuum pump is of utmost importance in cleanroom applications. The pump should be designed and constructed to minimize the generation and release of particles, oil vapors, or other contaminants into the cleanroom environment. Oil-free or dry vacuum pumps are commonly preferred in cleanroom applications as they eliminate the risk of oil contamination. Additionally, pumps with smooth surfaces and minimal crevices are easier to clean and maintain, reducing the potential for particle buildup.

2. Outgassing: Outgassing refers to the release of gases or vapors from the surfaces of materials, including the vacuum pump itself. In cleanroom applications, it is crucial to select a vacuum pump with low outgassing characteristics to prevent the introduction of contaminants into the environment. Vacuum pumps specifically designed for cleanroom use often undergo special treatments or use materials with low outgassing properties to minimize this effect.

3. Particle Generation: Vacuum pumps can generate particles due to the friction and wear of moving parts, such as rotors or vanes. These particles can become a source of contamination in cleanrooms. When selecting a vacuum pump for cleanroom applications, it is essential to consider the pump’s particle generation level and choose pumps that have been designed and tested to minimize particle emissions. Pumps with features like self-lubricating materials or advanced sealing mechanisms can help reduce particle generation.

4. Filtration and Exhaust Systems: The filtration and exhaust systems associated with the vacuum pump are critical for maintaining cleanroom standards. The vacuum pump should be equipped with efficient filters that can capture and remove any particles or contaminants generated during operation. High-quality filters, such as HEPA (High-Efficiency Particulate Air) filters, can effectively trap even the smallest particles. The exhaust system should be properly designed to ensure that filtered air is released outside the cleanroom or passes through additional filtration before being reintroduced into the environment.

5. Noise and Vibrations: Noise and vibrations generated by vacuum pumps can have an impact on cleanroom operations. Excessive noise can affect the working environment and compromise communication, while vibrations can potentially disrupt sensitive processes or equipment. It is advisable to choose vacuum pumps specifically designed for quiet operation and that incorporate measures to minimize vibrations. Pumps with noise-dampening features and vibration isolation systems can help maintain a quiet and stable cleanroom environment.

6. Compliance with Standards: Cleanroom applications often have specific industry standards or regulations that must be followed. When selecting a vacuum pump, it is important to ensure that it complies with relevant cleanroom standards and requirements. Considerations may include ISO cleanliness standards, cleanroom classification levels, and industry-specific guidelines for particle count, outgassing levels, or allowable noise levels. Manufacturers that provide documentation and certifications related to cleanroom suitability can help demonstrate compliance.

7. Maintenance and Serviceability: Proper maintenance and regular servicing of vacuum pumps are essential for their reliable and efficient operation. When choosing a vacuum pump for cleanroom applications, consider factors such as ease of maintenance, availability of spare parts, and access to service and support from the manufacturer. Pumps with user-friendly maintenance features, clear service instructions, and a responsive customer support network can help minimize downtime and ensure continued cleanroom performance.

In summary, selecting a vacuum pump for cleanroom applications requires careful consideration of factors such as cleanliness, outgassing characteristics, particle generation, filtration and exhaust systems, noise and vibrations, compliance with standards, and maintenance requirements. By choosing vacuum pumps designed specifically for cleanroom use and considering these key factors, cleanroom operators can maintain the required level of cleanliness and minimize the risk of contamination in their critical processes and products.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China OEM 2bec Series Liquid Water Ring Vacuum Pump and Compressor for Mining, Paper Making, Coal Washing and Power Plant   vacuum pump connector	China OEM 2bec Series Liquid Water Ring Vacuum Pump and Compressor for Mining, Paper Making, Coal Washing and Power Plant   vacuum pump connector
editor by Dream 2024-05-13

China supplier 2be1 353 110kw Liquid Ring Water Ring Vacuum Pump with Hot selling

Product Description

Application scope and characteristics:

Greentech International (Xihu (West Lake) Dis.) Co., Ltd is the professional vacuum pump supplier. 2BE1 series water ring vacuum pumps and compressors are the products with high efficiency and economic power, which are manufactured by our company integrating with the advanced technology of the imported products from Germany.

These series products adopt CHINAMFG and single action structure and have many advantages, such as, compact structure, convenient maintenance, reliable running, high efficiency and economic power.

The main characteristics of 2BE1 series products:

All the bearings are the imported products with the brand name of CHINAMFG orNTN for ensuring the precise orientation and the high stability during the working of the pump.

The material of the impeller is QT400 nodular iron or stainless steel for ensuring the stability when the pump works under the rigorous condition and can extend the lifetime of the pump.

The casing is made of steel or stainless steel plates to extend the lifetime of the 2BE1 series pumps.

The shaft bushing is made of stainless steel to improve the lifetime of the pump 5 times than the normal material.

The V-belt pulley (when the pump is driven by the belt) is used the high precise pulley with taper bushing to keep the reliability of the pump and extend its life. And it is also easy to mantle and dismantle.

The coupling is used to drive the pump directly. The flexible part connecting the 2 half coupling is made of polyurethane that makes the pump more reliable.

The unique design to set the separator above the pump saves the space and decreases the noise efficiently.

All the parts are cast by the resin sands that make the pump surface very smooth. It is not necessary to cover the surface of the pumps with putty and gives out the heat efficiently.

The mechanical seals (optional) are used the imported products to avoid the leakage when the pump works for a long time.

Type Speed
(Drive type)
r/min
Shaft power
kW
Motor power
kW
Motor
type
Limited vacuum
mbar
  Weight
(Whole set)
kg
Suction capacity
m 3 /h m 3 /min
2BE1 151-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
10.8
7.2
9.2
13.2
14.8
15
11
11
15
18.5
Y160L-4
Y160M-4
Y160M-4
Y160L-4
Y180M-4
33mbar
(-0.098MPa)
405
300
360
445
470
6.8
5.0
6.0
7.4
7.8
469
428
444
469
503
2BE1 152-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
12.5
8.3
10.5
15.0
17.2
15
11
15
18.5
22
Y160L-4
Y160M-4
Y160L-4
Y180M-4
Y180L-4
33mbar
(-0.098MPa)
465
340
415
510
535
7.8
5.7
6.9
8.5
8.9
481
437
481
515
533
2BE1 153-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
16.3
10.6
13.6
19.6
22.3
18.5
15
18.5
22
30
Y180M-4
Y160L-4
Y180M-4
Y180L-4
Y200L-4
33mbar
(-0.098MPa)
600
445
540
660
700
10.0
7.4
9.0
11.0
11.7
533
480
533
551
601
2BE1 202-0 970(D)
790(V)
880(v)
1100(V)
1170(V)
1300(V)
17
14
16
22
25
30
22
18.5
18.5
30
30
37
Y200L2-6
Y180M-4
Y180M-4
Y200L-4
Y200L-4
Y225S-4
33mbar
(-0.098MPa)
760
590
670
850
890
950
12.7
9.8
11.2
14.2
14.8
15.8
875
850
850
940
945
995
2BE1 203-0 970(D)
790(V)
880(V)
1100(V)
1170(V)
1300(V)
27
20
23
33
37
45
37
30
30
45
45
55
Y250M-6
Y200L-4
Y200L-4
Y225M-4
Y225M-4
Y250M-4
33mbar
(-0.098MPa)
1120
880
1000
1270
1320
1400
18.7
14.7
16.7
21.2
22.0
23.3
1065
995
995
1080
1085
1170
2BE1 252-0 740(D)
558(V)
660(V)
832(V)
885(V)
938(V)
38
26
31.8
49
54
60
45
30
37
55
75
75
Y280M-8
Y200L-4
Y225S-4
Y250M-4
Y280S-4
Y280S-4
33mbar
(-0.098MPa)
1700
1200
1500
1850
2000
2100
28.3
20.0
25.0
30.8
33.3
35.0
1693
1460
1515
1645
1805
1805
2BE1 253-0 740(D)
560(V)
660(V)
740(V)
792(V)
833(V)
885(V)
938(V)
54
37
45
54
60
68
77
86
75
45
55
75
75
90
90
110
Y315M-8
Y225M-4
Y250M-4
Y280S-4
Y280S-4
Y280M-4
Y280M-4
Y315S-4
33mbar
(-0.098MPa)
2450
1750
2140
2450
2560
2700
2870
3571
40.8
29.2
35.7
40.8
42.7
45.0
47.8
50.3
2215
1695
1785
1945
1945
2055
2060
2295
2BE1 303-0 740(D)
590(D)
466(V)
521(V)
583(V)
657(V)
743(V)
98
65
48
54
64
78
99
110
75
55
75
75
90
132
Y315L2-8
Y315L2-10
Y250M-4
Y280S-4
Y280S-4
Y280M-4
Y315M-4
33mbar
(-0.098MPa)
4000
3200
2500
2800
3100
3580
4000
66.7
53.3
41.7
46.7
51.7
59.7
66.7
3200
3200
2645
2805
2810
2925
3290
2BE1 305-1
2BE1 306-1
740(D)
590(D)
490(V)
521(V)
583(V)
657(V)
743(V)
102
70
55
59
68
84
103
132
90
75
75
90
110
132
Y355M1-8
Y355M1-10
Y280S-4
Y280S-4
Y280M-4
Y315S-4
Y315M-4
160mbar
(-0.085MPa)
4650
3750
3150
3320
3700
4130
4650
77.5
62.5
52.5
55.3
61.2
68.8
77.5
3800
3800
2950
3000
3100
3300
3450
2BE1 353-0 590(D)
390(V)
415(V)
464(V)
520(V)
585(V)
620(V)
660(V)
121
65
70
81
97
121
133
152
160
75
90
110
132
160
160
185
Y355L2-10
Y280S-4
Y280M-4
Y315S-4
Y315M-4
Y315L1-4
Y315L1-4
Y315L2-4
33mbar
(-0.098MPa)
5300
3580
3700
4100
4620
5200
5500
5850
88.3
59.7
61.7
68.3
77.0
86.7
91.7
97.5
4750
3560
3665
3905
4040
4100
4100
4240
2BE1 355-1
2BE1 356-1
590(D)
390(V)
435(V)
464(V)
520(V)
555(V)
585(V)
620(V)
130
75
86
90
102
115
130
145
160
90
110
110
132
132
160
185
Y355L2-10
Y280M-4
Y315S-4
Y315S-4
Y315M-4
Y315M-4
Y315L1-4
Y315L2-4
160mbar
(-0.085MPa)
6200
4180
4600
4850
5450
5800
6100
6350
103.3
69.7
76.7
80.8
90.8
98.3
101.7
105.8
5000
3920
4150
4160
4290
4300
4350
4450
2BE1 403-0 330(V)
372(V)
420(V)
472(V)
530(V)
565(V)
97
110
131
160
203
234
132
132
160
200
250
280
Y315M-4
Y315M-4
Y315L1-4
Y315L2-4
Y355M2-4
Y355L1-4
33mbar
(-0.098MPa)
5160
5700 6470
7380
8100
8600
86.0
95.0
107.8
123.0
135.0
143.3
5860
5870
5950
6190
6630
6800
2BE1 405-1
2BE1 406-1
330(V)
372(V)
420(V)
472(V)
530(V)
565(V)
100
118
140
170
206
235
132
160
185
200
250
280
Y315M-4
Y315L1-4
Y315L2-4
Y315L2-4
Y355M2-4
Y355L1-4
160mbar
(-0.085MPa)
6000
6700
7500
8350
9450
15710
100.0
111.7
125.0
139.2
157.5
168.3
5980
6070
6200
6310
6750
6920

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Pre-Suction Pump
Working Conditions: Wet
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used in the Aerospace Sector?

Vacuum pumps indeed have various applications in the aerospace sector. Here’s a detailed explanation:

Vacuum pumps play a crucial role in several areas of the aerospace industry, supporting various processes and systems. Some of the key applications of vacuum pumps in the aerospace sector include:

1. Space Simulation Chambers: Vacuum pumps are used in space simulation chambers to replicate the low-pressure conditions experienced in outer space. These chambers are utilized for testing and validating the performance and functionality of aerospace components and systems under simulated space conditions. Vacuum pumps create and maintain the necessary vacuum environment within these chambers, allowing engineers and scientists to evaluate the behavior and response of aerospace equipment in space-like conditions.

2. Propellant Management: In space propulsion systems, vacuum pumps are employed for propellant management. They help in the transfer, circulation, and pressurization of propellants, such as liquid rocket fuels or cryogenic fluids, in both launch vehicles and spacecraft. Vacuum pumps assist in creating the required pressure differentials for propellant flow and control, ensuring efficient and reliable operation of propulsion systems.

3. Environmental Control Systems: Vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft. These systems are responsible for maintaining the desired atmospheric conditions, including temperature, humidity, and cabin pressure, to ensure the comfort, safety, and well-being of crew members and passengers. Vacuum pumps are used to regulate and control the cabin pressure, facilitating the circulation of fresh air and maintaining the desired air quality within the aircraft or spacecraft.

4. Satellite Technology: Vacuum pumps find numerous applications in satellite technology. They are used in the fabrication and testing of satellite components, such as sensors, detectors, and electronic devices. Vacuum pumps help create the necessary vacuum conditions for thin film deposition, surface treatment, and testing processes, ensuring the performance and reliability of satellite equipment. Additionally, vacuum pumps are employed in satellite propulsion systems to manage propellants and provide thrust for orbital maneuvers.

5. Avionics and Instrumentation: Vacuum pumps are involved in the production and testing of avionics and instrumentation systems used in aerospace applications. They facilitate processes such as thin film deposition, vacuum encapsulation, and vacuum drying, ensuring the integrity and functionality of electronic components and circuitry. Vacuum pumps are also utilized in vacuum leak testing, where they help create a vacuum environment to detect and locate any leaks in aerospace systems and components.

6. High Altitude Testing: Vacuum pumps are used in high altitude testing facilities to simulate the low-pressure conditions encountered at high altitudes. These testing facilities are employed for evaluating the performance and functionality of aerospace equipment, such as engines, materials, and structures, under simulated high altitude conditions. Vacuum pumps create and control the required low-pressure environment, allowing engineers and researchers to assess the behavior and response of aerospace systems in high altitude scenarios.

7. Rocket Engine Testing: Vacuum pumps are crucial in rocket engine testing facilities. They are utilized to evacuate and maintain the vacuum conditions in engine test chambers or nozzles during rocket engine testing. By creating a vacuum environment, these pumps simulate the conditions experienced by rocket engines in the vacuum of space, enabling accurate testing and evaluation of engine performance, thrust levels, and efficiency.

It’s important to note that aerospace applications often require specialized vacuum pumps capable of meeting stringent requirements, such as high reliability, low outgassing, compatibility with propellants or cryogenic fluids, and resistance to extreme temperatures and pressures.

In summary, vacuum pumps are extensively used in the aerospace sector for a wide range of applications, including space simulation chambers, propellant management, environmental control systems, satellite technology, avionics and instrumentation, high altitude testing, and rocket engine testing. They contribute to the development, testing, and operation of aerospace equipment, ensuring optimal performance, reliability, and safety.

vacuum pump

How Do Vacuum Pumps Affect the Performance of Vacuum Chambers?

When it comes to the performance of vacuum chambers, vacuum pumps play a critical role. Here’s a detailed explanation:

Vacuum chambers are enclosed spaces designed to create and maintain a low-pressure environment. They are used in various industries and scientific applications, such as manufacturing, research, and material processing. Vacuum pumps are used to evacuate air and other gases from the chamber, creating a vacuum or low-pressure condition. The performance of vacuum chambers is directly influenced by the characteristics and operation of the vacuum pumps used.

Here are some key ways in which vacuum pumps affect the performance of vacuum chambers:

1. Achieving and Maintaining Vacuum Levels: The primary function of vacuum pumps is to create and maintain the desired vacuum level within the chamber. Vacuum pumps remove air and other gases, reducing the pressure inside the chamber. The efficiency and capacity of the vacuum pump determine how quickly the desired vacuum level is achieved and how well it is maintained. High-performance vacuum pumps can rapidly evacuate the chamber and maintain the desired vacuum level even when there are gas leaks or continuous gas production within the chamber.

2. Pumping Speed: The pumping speed of a vacuum pump refers to the volume of gas it can remove from the chamber per unit of time. The pumping speed affects the rate at which the chamber can be evacuated and the time required to achieve the desired vacuum level. A higher pumping speed allows for faster evacuation and shorter cycle times, improving the overall efficiency of the vacuum chamber.

3. Ultimate Vacuum Level: The ultimate vacuum level is the lowest pressure that can be achieved in the chamber. It depends on the design and performance of the vacuum pump. Higher-quality vacuum pumps can achieve lower ultimate vacuum levels, which are important for applications requiring higher levels of vacuum or for processes that are sensitive to residual gases.

4. Leak Detection and Gas Removal: Vacuum pumps can also assist in leak detection and gas removal within the chamber. By continuously evacuating the chamber, any leaks or gas ingress can be identified and addressed promptly. This ensures that the chamber maintains the desired vacuum level and minimizes the presence of contaminants or unwanted gases.

5. Contamination Control: Some vacuum pumps, such as oil-sealed pumps, use lubricating fluids that can introduce contaminants into the chamber. These contaminants may be undesirable for certain applications, such as semiconductor manufacturing or research. Therefore, the choice of vacuum pump and its potential for introducing contaminants should be considered to maintain the required cleanliness and purity of the vacuum chamber.

6. Noise and Vibrations: Vacuum pumps can generate noise and vibrations during operation, which can impact the performance and usability of the vacuum chamber. Excessive noise or vibrations can interfere with delicate experiments, affect the accuracy of measurements, or cause mechanical stress on the chamber components. Selecting vacuum pumps with low noise and vibration levels is important for maintaining optimal chamber performance.

It’s important to note that the specific requirements and performance factors of a vacuum chamber can vary depending on the application. Different types of vacuum pumps, such as rotary vane pumps, dry pumps, or turbomolecular pumps, offer varying capabilities and features that cater to specific needs. The choice of vacuum pump should consider factors such as the desired vacuum level, pumping speed, ultimate vacuum, contamination control, noise and vibration levels, and compatibility with the chamber materials and gases used.

In summary, vacuum pumps have a significant impact on the performance of vacuum chambers. They enable the creation and maintenance of the desired vacuum level, affect the pumping speed and ultimate vacuum achieved, assist in leak detection and gas removal, and influence contamination control. Careful consideration of the vacuum pump selection ensures optimal chamber performance for various applications.

vacuum pump

Can Vacuum Pumps Be Used in Food Processing?

Yes, vacuum pumps are widely used in food processing for various applications. Here’s a detailed explanation:

Vacuum pumps play a crucial role in the food processing industry by enabling the creation and maintenance of vacuum or low-pressure environments. They offer several benefits in terms of food preservation, packaging, and processing. Here are some common applications of vacuum pumps in food processing:

1. Vacuum Packaging: Vacuum pumps are extensively used in vacuum packaging processes. Vacuum packaging involves removing air from the packaging container to create a vacuum-sealed environment. This process helps extend the shelf life of food products by inhibiting the growth of spoilage-causing microorganisms and reducing oxidation. Vacuum pumps are used to evacuate the air from the packaging, ensuring a tight seal and maintaining the quality and freshness of the food.

2. Freeze Drying: Vacuum pumps are essential in freeze drying or lyophilization processes used in food processing. Freeze drying involves removing moisture from food products while they are frozen, preserving their texture, flavor, and nutritional content. Vacuum pumps create a low-pressure environment that allows frozen water to directly sublimate from solid to vapor, resulting in the removal of moisture from the food without causing damage or loss of quality.

3. Vacuum Cooling: Vacuum pumps are utilized in vacuum cooling processes for rapid and efficient cooling of food products. Vacuum cooling involves placing the food in a vacuum chamber and reducing the pressure. This lowers the boiling point of water, facilitating the rapid evaporation of moisture and heat from the food, thereby cooling it quickly. Vacuum cooling helps maintain the freshness, texture, and quality of delicate food items such as fruits, vegetables, and bakery products.

4. Vacuum Concentration: Vacuum pumps are employed in vacuum concentration processes in the food industry. Vacuum concentration involves removing excess moisture from liquid food products to increase their solids content. By creating a vacuum, the boiling point of the liquid is reduced, allowing for gentle evaporation of water while preserving the desired flavors, nutrients, and viscosity of the product. Vacuum concentration is commonly used in the production of juices, sauces, and concentrates.

5. Vacuum Mixing and Deaeration: Vacuum pumps are used in mixing and deaeration processes in food processing. In the production of certain food products such as chocolates, confectioneries, and sauces, vacuum mixing is employed to remove air bubbles, achieve homogeneity, and improve product texture. Vacuum pumps aid in the removal of entrapped air and gases, resulting in smooth and uniform food products.

6. Vacuum Filtration: Vacuum pumps are utilized in food processing for vacuum filtration applications. Vacuum filtration involves separating solids from liquids or gases using a filter medium. Vacuum pumps create suction that draws the liquid or gas through the filter, leaving behind the solid particles. Vacuum filtration is commonly used in processes such as clarifying liquids, removing impurities, and separating solids from liquids in the production of beverages, oils, and dairy products.

7. Marinating and Brining: Vacuum pumps are employed in marinating and brining processes in the food industry. By applying a vacuum to the marinating or brining container, the pressure is reduced, allowing the marinade or brine to penetrate the food more efficiently. Vacuum marinating and brining help enhance flavor absorption, reduce marinating time, and improve the overall taste and texture of the food.

8. Controlled Atmosphere Packaging: Vacuum pumps are used in controlled atmosphere packaging (CAP) systems in the food industry. CAP involves modifying the gas composition within food packaging to extend the shelf life and maintain the quality of perishable products. Vacuum pumps aid in the removal of oxygen or other unwanted gases from the package, allowing the introduction of a desired gas mixture that preserves the food’s freshness and inhibits microbial growth.

These are just a few examples of how vacuum pumps are used in food processing. The ability to create and control vacuum or low-pressure environments is a valuable asset in preserving food quality, enhancing shelf life, and facilitating various processing techniques in the food industry.

China supplier 2be1 353 110kw Liquid Ring Water Ring Vacuum Pump   with Hot selling	China supplier 2be1 353 110kw Liquid Ring Water Ring Vacuum Pump   with Hot selling
editor by Dream 2024-05-13

China Custom Industrial Vacuum Pump Air Oil Water Rotary Dry Portable Mini Scroll Reciprocating Diaphragm Centrifugal Positive Displacement DC AC Vacuum Pump with Great quality

Product Description

Industrial Vacuum Pump Air Oil Water Rotary Dry Portable Mini Scroll Reciprocating Diaphragm Centrifugal Positive Displacement DC AC Vacuum Pump

industrial vacuum pumps

Rotary vane: Rotary vane pumps are comprised of a series of vanes that are mounted to a rotor that turns inside a cavity. As the vanes rotate, centrifugal force extends them from their individual slots, forming compression cells that get larger to draw air in from the intake and smaller to push air out the exhaust.

Articulated piston: An articulated piston industrial vacuum pump operates in a manner similar to that of an automobile engine. As the piston moves downward inside the cylinder, air is drawn in through the intake valve. During the piston’s upward stroke, the air is permitted to escape via an exhaust valve. Two spring-backed piston rings are used to seal the piston to the cylinder.

Screw: Rotary screw pumnps include 2 parallel rotary screws in the pump housing. The screws are synchronized to turn in opposite directions, which causes the compression action to occur. The gas is compressed in the direction of the pump’s discharge port.

Liquid ring: Liquid ring pumps also operate via positive displacement. During operation, the pump’s impeller rotates inside the pump casing. A rotating liquid ring then seals the impeller and its blades. Liquid is sucked into the compression chamber to keep the ring stable. Conveyed gas is compressed during each impeller revolution.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: Vacuum
Work Function: Mainsuction Pump
Working Conditions: Dry
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

diaphragm vane pump

What safety features are typically integrated into diaphragm vacuum pump systems?

Diaphragm vacuum pump systems typically incorporate various safety features to ensure safe operation and protect both the users and the equipment. Here’s a detailed explanation:

1. Overpressure Protection: Diaphragm vacuum pump systems often include overpressure protection mechanisms to prevent excessive pressure buildup. These mechanisms can be in the form of pressure relief valves or pressure sensors that automatically shut off the pump or release excess pressure if it exceeds the predefined limits. Overpressure protection safeguards the system from potential damage and reduces the risk of accidents or equipment failure.

2. Thermal Protection: Thermal protection features are designed to prevent the pump from overheating. Diaphragm pumps can generate heat during operation, especially in continuous or intensive use. Thermal protection mechanisms, such as thermal switches or temperature sensors, monitor the pump’s temperature and automatically shut it down or activate cooling systems if the temperature exceeds safe limits. This helps prevent damage to the pump and reduces the risk of fire or other safety hazards.

3. Leak Detection: Diaphragm vacuum pump systems may incorporate leak detection mechanisms to alert users in case of any air or gas leakage. These mechanisms can include pressure sensors or flow sensors that monitor the system’s integrity. If a leak is detected, visual or audible alarms may be triggered, indicating the need for immediate attention and repair to maintain the system’s efficiency and prevent the release of potentially harmful substances into the environment.

4. Electrical Safety: Diaphragm pump systems have electrical safety features to protect against electrical hazards. This includes measures such as ground fault circuit interrupters (GFCI) or residual current devices (RCD) that detect and interrupt electrical faults, preventing electric shocks or short circuits. Proper grounding and insulation of electrical components are also important safety considerations in diaphragm pump systems.

5. Emergency Stop: Many diaphragm pump systems are equipped with an emergency stop button or switch that allows users to quickly shut down the pump in case of an emergency or hazardous situation. The emergency stop feature provides a convenient and immediate means to halt pump operation, ensuring the safety of the users and preventing further risks or damages.

6. System Monitoring and Alarms: Advanced diaphragm pump systems may incorporate monitoring features that continuously assess the system’s performance and provide real-time feedback. This can include monitoring parameters such as vacuum levels, temperature, pressure, or flow rates. Alarms or visual indicators are often integrated to alert users in case of deviations from normal operating conditions, enabling prompt corrective actions and preventing potential safety issues.

It’s important to note that the specific safety features integrated into diaphragm vacuum pump systems may vary depending on the manufacturer, model, and intended application. Users should carefully review the product documentation and follow the manufacturer’s instructions regarding safety precautions, installation requirements, and maintenance procedures to ensure safe and proper use of the equipment.

In summary, diaphragm vacuum pump systems typically incorporate safety features such as overpressure protection, thermal protection, leak detection, electrical safety measures, emergency stop functionalities, and system monitoring with alarms. These safety features aim to protect users, prevent equipment damage, and ensure the safe and reliable operation of the diaphragm pump system.

diaphragm vane pump

Are there variations in diaphragm vacuum pump designs, and how do they affect performance?

Yes, there are variations in diaphragm vacuum pump designs, and these variations can affect the performance of the pumps. Here’s a detailed explanation:

Diaphragm vacuum pumps are available in different designs and configurations to meet specific application requirements. The design variations can impact several aspects of the pump’s performance, including:

Pump Construction: Diaphragm vacuum pumps can have single or multiple diaphragms. Single diaphragm pumps typically offer a compact and lightweight design, making them suitable for portable applications. Multiple diaphragm pumps, on the other hand, provide higher flow rates and enhanced performance for applications that require greater pumping capacity.

Materials of Construction: Diaphragm pumps can be constructed using various materials, including metals, plastics, and elastomers. The choice of materials affects the pump’s chemical compatibility, resistance to corrosion or abrasion, and overall durability. Selecting the appropriate materials is crucial to ensure reliable pump performance in specific operating conditions.

Valve Design: The valves in diaphragm vacuum pumps play a critical role in controlling the direction of air flow and maintaining efficient pumping. Variations in valve design, such as the type of valves used (e.g., flapper valves, reed valves) and their configuration, can impact the pump’s suction capacity, vacuum level, and overall efficiency.

Sealing Mechanisms: Diaphragm pumps employ various sealing mechanisms to ensure airtight operation and prevent air leakage. The sealing mechanisms can differ in terms of design, materials used, and effectiveness. Well-designed sealing mechanisms are necessary to maintain a consistent vacuum level and prevent loss of suction during operation.

Control Features: Advanced diaphragm vacuum pumps may incorporate control features such as variable speed drives, pressure sensors, or automated systems for monitoring and adjusting pump performance. These control features can improve the pump’s efficiency, optimize energy consumption, and provide greater control over vacuum levels and flow rates.

The specific design variations in diaphragm vacuum pumps are often tailored to meet different application requirements, such as laboratory research, medical devices, or industrial processes. Therefore, it’s essential to consider the intended application and select a pump design that aligns with the desired performance parameters.

In summary, diaphragm vacuum pumps come in various designs and configurations that can impact their performance. Factors such as pump construction, materials of construction, valve design, sealing mechanisms, and control features all contribute to the overall efficiency, reliability, and suitability of the pump for specific applications.

diaphragm vane pump

What are the typical applications of diaphragm vacuum pumps in laboratories and industries?

Diaphragm vacuum pumps find widespread use in laboratories and various industries due to their versatile capabilities. Here’s a detailed explanation of the typical applications of diaphragm vacuum pumps in laboratories and industries:

In Laboratories:

Laboratory Research and Analysis: Diaphragm vacuum pumps are extensively used in laboratories for various research and analytical applications. They provide vacuum conditions necessary for techniques such as filtration, degassing, rotary evaporation, centrifugation, and vacuum ovens. Diaphragm pumps are also used in analytical instruments like gas chromatographs, mass spectrometers, and vacuum-based sample preparation systems.

Medical and Healthcare: Diaphragm pumps are employed in medical and healthcare settings for applications such as vacuum filtration in microbiology, vacuum aspiration in clinical laboratories, vacuum sealing of sterilized containers, and vacuum drying in medical device manufacturing. They are also used in dental clinics for suction and aspiration procedures.

Environmental Monitoring and Analysis: Diaphragm vacuum pumps play a crucial role in environmental monitoring and analysis. They are used for air sampling, gas collection, and monitoring of pollutants in ambient air or emission sources. Diaphragm pumps are utilized in environmental testing laboratories for sample preparation and analysis, such as water and soil testing.

In Industries:

Vacuum Filtration: Diaphragm vacuum pumps are commonly used in industries for filtration processes. They create a vacuum to draw liquids through a filter medium, separating solids from the liquid. This technique is widely employed in industries such as pharmaceuticals, biotechnology, food and beverage, and chemical processing.

Vacuum Drying and Degassing: Diaphragm pumps facilitate vacuum drying and degassing processes in industries. They help remove moisture or volatile substances from materials or products under vacuum conditions. This is crucial in industries like electronics manufacturing, automotive, aerospace, and materials science.

Automotive and Manufacturing Processes: Diaphragm vacuum pumps find applications in automotive and manufacturing processes. They are used for vacuum-assisted molding, vacuum lifting and handling of objects, vacuum packaging, and vacuum-based testing or leak detection in components and systems.

Semiconductor and Electronics Manufacturing: Diaphragm pumps are extensively utilized in the semiconductor and electronics industry. They provide vacuum conditions for processes such as wafer handling, thin film deposition, etching, and packaging. Diaphragm pumps are preferred due to their oil-free operation, which prevents contamination of sensitive electronic components.

These are some of the typical applications of diaphragm vacuum pumps in laboratories and industries. The versatility, oil-free operation, chemical resistance, and compact design of diaphragm pumps make them suitable for a wide range of applications, contributing to their popularity across various sectors.

China Custom Industrial Vacuum Pump Air Oil Water Rotary Dry Portable Mini Scroll Reciprocating Diaphragm Centrifugal Positive Displacement DC AC Vacuum Pump   with Great quality China Custom Industrial Vacuum Pump Air Oil Water Rotary Dry Portable Mini Scroll Reciprocating Diaphragm Centrifugal Positive Displacement DC AC Vacuum Pump   with Great quality
editor by Dream 2024-05-13

China Best Sales Compressed Air Diaphragm Pump Water Transfer Pneumatic Diaphragm Pump for Chemical vacuum pump booster

Product Description

 

Product Description

2BE series water ring vacuum pump and compressor, based on many years of scientific research results and production experience, combined with the international advanced technology of similar products, developed high efficiency and energy saving products, usually used for pumping no CHINAMFG particles, insoluble in water, no corrosion gas, in order to form a vacuum and pressure in a closed container. By changing the structure material, it can also be used to suck corrosive gas or to use corrosive liquid as working fluid. Widely used in papermaking, chemical, petrochemical, light industry, pharmaceutical, food, metallurgy, building materials, electrical appliances, coal washing, mineral processing, chemical fertilizer and other industries.

This series of pumps uses the CHINAMFG single action structure, has the advantages of simple structure, convenient maintenance, reliable operation, high efficiency and energy saving, and can adapt to large displacement, load impact fluctuation and other harsh conditions.
The key components, such as the distribution plate, impeller and pump shaft, have been optimized to simplify the structure, improve the performance and achieve energy saving. The welding impeller is used, the blade is pressed and formed once, and the shape line is reasonable; Hub processing, fundamentally solve the dynamic balance problem. Impeller and pump shaft are fitted with hot filling interference, reliable performance. It runs smoothly. After the impeller is welded, the whole is subjected to good heat treatment, and the blade has good toughness, so that the impact resistance and bending resistance of the blade can be fundamentally guaranteed, and it can adapt to the bad working conditions of load impact fluctuation.
2BE series pump, with air and water separator, multi-position exhaust port, pump cover is provided with exhaust valve overhaul window, impeller and distribution plate clearance through positioning bearing gland at both ends of the adjustment, easy to install and use, simple operation, easy maintenance.

Pump structure

The performance curve of this series of pumps is measured under the following working conditions: the suction medium is 20°C saturated air, the working liquid temperature is 15°C, the exhaust pressure is 1013mbar, and the deviation of soil is 10%.

Structure declaration

2BEA-10-25 Structure diagram

1.Flat key 2. Shaft 3. Oil deflector 4. Bearing cap 5. Bearings 6. Bearing bracket 7.Brasque cover
8.Brasque body 9. Brasque ring 10. Brasque 11.Valve plate 12. Valve block
13.Front distribution plate 14.Pump body 15. Impeller 16. O seal ring.
17.Back distribution plate 18. Side cover. 19. Flat key 20. Axle sleeve 21. Elastic collar
22.Water retaining ring 23. Adjusting washer 24. Rear bearing body 25. Bearing screw cap
26.Bearing 27. Bolt

 

2BEA-30-70 Structure diagram

1.Flat key 2. Shaft 3. Oil deflector 4. Front bearing retainer 5. Front bearing body
6. Front bearing inner cover 7. Front side cover 8. Brasque cover 9. Brasque body 10. Brasque ring
11. Brasque 12. Front distribution plate 13. Pump body 14. Impeller 15. O seal ring
16. Valve block 17. Valve plate 18. Back distribution plate 19. Axle sleeve 20. Flat key
21. Back side cover 22. Water retaining ring 23. Rear bearing inner cover 24. Bearing
25. Adjusting washer 26. Oil block 27. Rear bearing outer cover 28. Back bearing body
29. Oil baffle disc 30. Elastic retainer or circular spiral
 

Product Parameters

Model 2BEA SERIES
Minimum suction absolute pressure (hPa) 33-160
Suction intensity(m³/min) Absolute inhalation capacity 60hPa 3,95-336
Absolute inhalation capacity 100hPa 4.58-342
Absolute inhalation capacity 200hPa 4.87-352
Absolute inhalation capacity 400hPa 4.93-353
Max. shaft power(kw) 7-453
Motor power(kw) 11-560
Speed(rpm) 197-1750
Weight(kg) 235-11800
Size 795*375*355mm-3185*2110*2045mm

 

Model 2BEC SERIES
Minimum suction absolute pressure (hPa) 160
Suction intensity(m³/min) Absolute inhalation capacity 60hPa 63-1700
Absolute inhalation capacity 100hPa 64-1738
Absolute inhalation capacity 200hPa 65-1785
Absolute inhalation capacity 400hPa 67-1800
Absolute inhalation capacity 550hPa 68-1830
Max. shaft power(kw) 61-2100
Motor power(kw) 75-2240
Speed(rpm) 105-610
Weight(kg) 2930-57500
Size 2102*1320*1160mm-5485*3560*3400mm

Detailed Photos

Operation site

 

Company presentation

Product gallery

RFQ

Q1. What is your terms of packing? 
A: Generally, we pack our goods in neutral export wooden case . If you have legally registered patent, we can pack the goods in
wooden case with your own marks after getting your authorization letters.

Q2. What is your termsof payment? 
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance. 

Q3. What is your terms of delivery? 
A: EXW, FOB, CFR, CIF, etc.

Q4. How about your delivery time?
A: Generally, it will take from 10 dasys to 30 days after receiving your advance payment according to the pump’s material. The
specific delivery time also depends on the items and the quantity of your order.

Q5. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures. 

Q6. What is your sample policy? 
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q7. Do you test all your goods before delivery?
A: Yes, we have 100% test the pumps before delivery .

Q8: How do you make our business long-term and good relationship? 
A. We keep good quality and competitive price to ensure our customers benefit ; 
B. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they are from.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online
Warranty: 1 Years
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: High Vacuum
Customization:
Available

|

diaphragm vane pump

What safety features are typically integrated into diaphragm vacuum pump systems?

Diaphragm vacuum pump systems typically incorporate various safety features to ensure safe operation and protect both the users and the equipment. Here’s a detailed explanation:

1. Overpressure Protection: Diaphragm vacuum pump systems often include overpressure protection mechanisms to prevent excessive pressure buildup. These mechanisms can be in the form of pressure relief valves or pressure sensors that automatically shut off the pump or release excess pressure if it exceeds the predefined limits. Overpressure protection safeguards the system from potential damage and reduces the risk of accidents or equipment failure.

2. Thermal Protection: Thermal protection features are designed to prevent the pump from overheating. Diaphragm pumps can generate heat during operation, especially in continuous or intensive use. Thermal protection mechanisms, such as thermal switches or temperature sensors, monitor the pump’s temperature and automatically shut it down or activate cooling systems if the temperature exceeds safe limits. This helps prevent damage to the pump and reduces the risk of fire or other safety hazards.

3. Leak Detection: Diaphragm vacuum pump systems may incorporate leak detection mechanisms to alert users in case of any air or gas leakage. These mechanisms can include pressure sensors or flow sensors that monitor the system’s integrity. If a leak is detected, visual or audible alarms may be triggered, indicating the need for immediate attention and repair to maintain the system’s efficiency and prevent the release of potentially harmful substances into the environment.

4. Electrical Safety: Diaphragm pump systems have electrical safety features to protect against electrical hazards. This includes measures such as ground fault circuit interrupters (GFCI) or residual current devices (RCD) that detect and interrupt electrical faults, preventing electric shocks or short circuits. Proper grounding and insulation of electrical components are also important safety considerations in diaphragm pump systems.

5. Emergency Stop: Many diaphragm pump systems are equipped with an emergency stop button or switch that allows users to quickly shut down the pump in case of an emergency or hazardous situation. The emergency stop feature provides a convenient and immediate means to halt pump operation, ensuring the safety of the users and preventing further risks or damages.

6. System Monitoring and Alarms: Advanced diaphragm pump systems may incorporate monitoring features that continuously assess the system’s performance and provide real-time feedback. This can include monitoring parameters such as vacuum levels, temperature, pressure, or flow rates. Alarms or visual indicators are often integrated to alert users in case of deviations from normal operating conditions, enabling prompt corrective actions and preventing potential safety issues.

It’s important to note that the specific safety features integrated into diaphragm vacuum pump systems may vary depending on the manufacturer, model, and intended application. Users should carefully review the product documentation and follow the manufacturer’s instructions regarding safety precautions, installation requirements, and maintenance procedures to ensure safe and proper use of the equipment.

In summary, diaphragm vacuum pump systems typically incorporate safety features such as overpressure protection, thermal protection, leak detection, electrical safety measures, emergency stop functionalities, and system monitoring with alarms. These safety features aim to protect users, prevent equipment damage, and ensure the safe and reliable operation of the diaphragm pump system.

diaphragm vane pump

Are there variations in diaphragm vacuum pump designs, and how do they affect performance?

Yes, there are variations in diaphragm vacuum pump designs, and these variations can affect the performance of the pumps. Here’s a detailed explanation:

Diaphragm vacuum pumps are available in different designs and configurations to meet specific application requirements. The design variations can impact several aspects of the pump’s performance, including:

Pump Construction: Diaphragm vacuum pumps can have single or multiple diaphragms. Single diaphragm pumps typically offer a compact and lightweight design, making them suitable for portable applications. Multiple diaphragm pumps, on the other hand, provide higher flow rates and enhanced performance for applications that require greater pumping capacity.

Materials of Construction: Diaphragm pumps can be constructed using various materials, including metals, plastics, and elastomers. The choice of materials affects the pump’s chemical compatibility, resistance to corrosion or abrasion, and overall durability. Selecting the appropriate materials is crucial to ensure reliable pump performance in specific operating conditions.

Valve Design: The valves in diaphragm vacuum pumps play a critical role in controlling the direction of air flow and maintaining efficient pumping. Variations in valve design, such as the type of valves used (e.g., flapper valves, reed valves) and their configuration, can impact the pump’s suction capacity, vacuum level, and overall efficiency.

Sealing Mechanisms: Diaphragm pumps employ various sealing mechanisms to ensure airtight operation and prevent air leakage. The sealing mechanisms can differ in terms of design, materials used, and effectiveness. Well-designed sealing mechanisms are necessary to maintain a consistent vacuum level and prevent loss of suction during operation.

Control Features: Advanced diaphragm vacuum pumps may incorporate control features such as variable speed drives, pressure sensors, or automated systems for monitoring and adjusting pump performance. These control features can improve the pump’s efficiency, optimize energy consumption, and provide greater control over vacuum levels and flow rates.

The specific design variations in diaphragm vacuum pumps are often tailored to meet different application requirements, such as laboratory research, medical devices, or industrial processes. Therefore, it’s essential to consider the intended application and select a pump design that aligns with the desired performance parameters.

In summary, diaphragm vacuum pumps come in various designs and configurations that can impact their performance. Factors such as pump construction, materials of construction, valve design, sealing mechanisms, and control features all contribute to the overall efficiency, reliability, and suitability of the pump for specific applications.

diaphragm vane pump

What are the key components of a diaphragm vacuum pump?

A diaphragm vacuum pump consists of several key components that work together to create vacuum or low-pressure conditions. Here’s a detailed explanation of these components:

1. Diaphragm:

The diaphragm is the central component of a diaphragm vacuum pump. It is a flexible membrane that moves back and forth within a chamber to generate the pumping action. The diaphragm is typically made of a durable, chemically resistant material such as rubber or elastomer. It is responsible for creating changes in the chamber volume, resulting in suction and compression of gases.

2. Pumping Chamber:

The pumping chamber houses the diaphragm and provides the space for the diaphragm’s movement. It is a sealed chamber that expands and contracts as the diaphragm flexes. The pumping chamber is designed to be gas-tight to prevent leakage and maintain the vacuum or low-pressure conditions.

3. Inlet and Outlet Valves:

Diaphragm vacuum pumps typically have inlet and outlet valves that control the flow of gases into and out of the pumping chamber.

Inlet Valve: The inlet valve allows gas or vapor to enter the pumping chamber during the suction phase. It opens when the diaphragm moves downward, creating a low-pressure region within the chamber.

Outlet Valve: The outlet valve allows the compressed gas to be expelled from the pumping chamber during the compression and exhaust phases. It opens when the diaphragm moves upward, compressing the gas and forcing it out of the chamber.

4. Drive Mechanism:

The drive mechanism provides the motion and power to move the diaphragm back and forth within the pumping chamber. It can be an electric motor, a pneumatic actuator, or other mechanisms depending on the pump design. The drive mechanism ensures the continuous operation of the diaphragm, creating the pumping action.

5. Check Valves:

Check valves, also known as one-way valves or non-return valves, are often incorporated into diaphragm vacuum pumps to ensure the flow of gas occurs in the desired direction.

Inlet Check Valve: The inlet check valve allows gas to enter the pumping chamber during the suction phase but prevents backflow when the diaphragm moves upward during compression and exhaust phases.

Outlet Check Valve: The outlet check valve allows the compressed gas to be expelled from the pumping chamber during the compression and exhaust phases but prevents backflow into the chamber during the suction phase.

6. Housing and Mounting:

The housing of a diaphragm vacuum pump encloses and protects the internal components. It is typically made of a sturdy material such as metal or plastic. The housing also provides mounting points for the pump, allowing it to be securely installed in various orientations or integrated into larger systems.

7. Control and Monitoring Features:

Some diaphragm vacuum pumps may include control and monitoring features such as power switches, pressure gauges, or digital interfaces. These features allow for convenient operation, monitoring of vacuum levels, and integration with control systems or automation.

It’s important to note that the specific design and configuration of diaphragm vacuum pumps may vary across different manufacturers and models. Consulting the manufacturer’s specifications and documentation will provide detailed information on the components, construction, and performance characteristics of a particular diaphragm pump.

The combination of the diaphragm, pumping chamber, valves, drive mechanism, check valves, housing, and control features enables diaphragm vacuum pumps to generate efficient and reliable vacuum or low-pressure conditions for a wide range of applications.

China Best Sales Compressed Air Diaphragm Pump Water Transfer Pneumatic Diaphragm Pump for Chemical   vacuum pump booster	China Best Sales Compressed Air Diaphragm Pump Water Transfer Pneumatic Diaphragm Pump for Chemical   vacuum pump booster
editor by Dream 2024-05-10