Tag Archives: mini electric vacuum pump

China factory Vacuum Pump Air Fuel Injection Motor Aquarium Electric Syringe Hydraulic Electric Concrete Mixer and Mini Bicycle Irrigation Vacuum Pump vacuum pump ac

Product Description

            Vacuum Pump Air Fuel Injection Motor Aquarium Electric Syringe Hydraulic Electric Concrete Mixer and Mini Bicycle Irrigation Vacuum Pump

Related products

 

Application of Vacuum Pump
Vacuum pumps find application in various industries and processes where the creation or maintenance of a vacuum is required. They remove gas or air from an enclosed space, creating a partial or complete vacuum. Here are some typical applications of vacuum pumps:

1. Industrial Processes: Vacuum pumps are utilized in various industrial processes, such as vacuum distillation, vacuum drying, vacuum impregnation, and vacuum packaging. They help create a controlled environment with reduced pressure, allowing for removing moisture, contaminants, or unwanted gases from materials or products.

2. CZPT Systems: Vacuum pumps are used in heating, ventilation, and air conditioning (HVAC) systems for refrigerant evacuation during installation, maintenance, or repair. They help remove air and moisture from the refrigeration system, ensuring optimal performance and preventing potential issues such as refrigerant contamination or system inefficiency.

3. Semiconductor Manufacturing: Vacuum pumps are crucial in the semiconductor industry. They are used in thin film deposition, etching, and ion implantation, where a clean and controlled vacuum environment is essential for precise material deposition and device fabrication.

4. Laboratory Applications: Vacuum pumps are extensively utilized in laboratory settings for various applications. They are used in vacuum filtration, vacuum distillation, freeze-drying, degassing, and other processes that require the removal of gases or creating a controlled vacuum environment.

5. Medical and Healthcare: Vacuum pumps are applied in medical and healthcare facilities for various purposes. They are used in vacuum systems to suction fluids and gases during surgeries or medical procedures. Vacuum pumps are also employed in vacuum-assisted wound closure, where negative pressure promotes wound healing.

6. Food Processing and Packaging: Vacuum pumps are utilized in the food industry for vacuum packaging to extend the shelf life of perishable foods. They remove air from the packaging, reducing oxygen levels and inhibiting the growth of spoilage microorganisms. Vacuum pumps are also used in food processing applications such as freeze-drying, where moisture is removed from food products while maintaining quality.

7. Environmental Applications: Vacuum pumps are employed in environmental monitoring and remediation processes. They are used in groundwater and soil remediation systems, where they help extract and remove contaminants. Vacuum pumps are also used in air sampling equipment to collect air samples in environmental monitoring studies.

8. Automotive Industry: Vacuum pumps find application in automotive systems, particularly in power brake systems. They create vacuum pressure to assist in brake actuation, ensuring efficient and responsive vehicle braking performance.

These are just a few examples of the diverse applications of vacuum pumps. The specific type and capacity of the vacuum pump may vary depending on the requirements of the particular process or industry. Different types of vacuum pumps, such as rotary vane pumps, diaphragm pumps, or scroll pumps, are chosen based on factors such as required vacuum level, flow rate, and compatibility with the process or application.

Company Profile

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Installation Guide 1-Year Warranty
Warranty: Installation Guide 1-Year Warranty
Max.Head: >150m
Max.Capacity: >400 L/min
Driving Type: Magnetic
Material: Cast Iron
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used in the Automotive Industry?

Yes, vacuum pumps are widely used in the automotive industry for various applications. Here’s a detailed explanation:

The automotive industry relies on vacuum pumps for several critical functions and systems within vehicles. Vacuum pumps play a crucial role in enhancing performance, improving fuel efficiency, and enabling the operation of various automotive systems. Here are some key applications of vacuum pumps in the automotive industry:

1. Brake Systems: Vacuum pumps are commonly used in vacuum-assisted brake systems, also known as power brakes. These systems utilize vacuum pressure to amplify the force applied by the driver to the brake pedal, making braking more efficient and responsive. Vacuum pumps help generate the required vacuum for power brake assistance, ensuring reliable and consistent braking performance.

2. Emission Control Systems: Vacuum pumps are integral components of emission control systems in vehicles. They assist in operating components such as the Exhaust Gas Recirculation (EGR) valve and the Evaporative Emission Control (EVAP) system. Vacuum pumps help create the necessary vacuum conditions for proper functioning of these systems, reducing harmful emissions and improving overall environmental performance.

3. HVAC Systems: Heating, Ventilation, and Air Conditioning (HVAC) systems in vehicles often utilize vacuum pumps for various functions. Vacuum pumps help control the vacuum-operated actuators that regulate the direction, temperature, and airflow of the HVAC system. They ensure efficient operation and precise control of the vehicle’s interior climate control system.

4. Turbocharger and Supercharger Systems: In performance-oriented vehicles, turbocharger and supercharger systems are used to increase engine power and efficiency. Vacuum pumps play a role in these systems by providing vacuum pressure for actuating wastegates, blow-off valves, and other control mechanisms. These components help regulate the boost pressure and ensure optimal performance of the forced induction system.

5. Fuel Delivery Systems: Vacuum pumps are employed in certain types of fuel delivery systems, such as mechanical fuel pumps. These pumps utilize vacuum pressure to draw fuel from the fuel tank and deliver it to the engine. While mechanical fuel pumps are less commonly used in modern vehicles, vacuum pumps are still found in some specialized applications.

6. Engine Management Systems: Vacuum pumps are utilized in engine management systems for various functions. They assist in operating components such as vacuum-operated actuators, vacuum reservoirs, and vacuum sensors. These components play a role in engine performance, emissions control, and overall system functionality.

7. Fluid Control Systems: Vacuum pumps are used in fluid control systems within vehicles, such as power steering systems. Vacuum-assisted power steering systems utilize vacuum pressure to assist the driver in steering, reducing the effort required. Vacuum pumps provide the necessary vacuum for power steering assistance, enhancing maneuverability and driver comfort.

8. Diagnostic and Testing Equipment: Vacuum pumps are also utilized in automotive diagnostic and testing equipment. These pumps create vacuum conditions necessary for testing and diagnosing various vehicle systems, such as intake manifold leaks, brake system integrity, and vacuum-operated components.

It’s important to note that different types of vacuum pumps may be used depending on the specific automotive application. Common vacuum pump technologies in the automotive industry include diaphragm pumps, rotary vane pumps, and electric vacuum pumps.

In summary, vacuum pumps have numerous applications in the automotive industry, ranging from brake systems and emission control to HVAC systems and engine management. They contribute to improved safety, fuel efficiency, environmental performance, and overall vehicle functionality.

vacuum pump

How Do Vacuum Pumps Affect the Performance of Vacuum Chambers?

When it comes to the performance of vacuum chambers, vacuum pumps play a critical role. Here’s a detailed explanation:

Vacuum chambers are enclosed spaces designed to create and maintain a low-pressure environment. They are used in various industries and scientific applications, such as manufacturing, research, and material processing. Vacuum pumps are used to evacuate air and other gases from the chamber, creating a vacuum or low-pressure condition. The performance of vacuum chambers is directly influenced by the characteristics and operation of the vacuum pumps used.

Here are some key ways in which vacuum pumps affect the performance of vacuum chambers:

1. Achieving and Maintaining Vacuum Levels: The primary function of vacuum pumps is to create and maintain the desired vacuum level within the chamber. Vacuum pumps remove air and other gases, reducing the pressure inside the chamber. The efficiency and capacity of the vacuum pump determine how quickly the desired vacuum level is achieved and how well it is maintained. High-performance vacuum pumps can rapidly evacuate the chamber and maintain the desired vacuum level even when there are gas leaks or continuous gas production within the chamber.

2. Pumping Speed: The pumping speed of a vacuum pump refers to the volume of gas it can remove from the chamber per unit of time. The pumping speed affects the rate at which the chamber can be evacuated and the time required to achieve the desired vacuum level. A higher pumping speed allows for faster evacuation and shorter cycle times, improving the overall efficiency of the vacuum chamber.

3. Ultimate Vacuum Level: The ultimate vacuum level is the lowest pressure that can be achieved in the chamber. It depends on the design and performance of the vacuum pump. Higher-quality vacuum pumps can achieve lower ultimate vacuum levels, which are important for applications requiring higher levels of vacuum or for processes that are sensitive to residual gases.

4. Leak Detection and Gas Removal: Vacuum pumps can also assist in leak detection and gas removal within the chamber. By continuously evacuating the chamber, any leaks or gas ingress can be identified and addressed promptly. This ensures that the chamber maintains the desired vacuum level and minimizes the presence of contaminants or unwanted gases.

5. Contamination Control: Some vacuum pumps, such as oil-sealed pumps, use lubricating fluids that can introduce contaminants into the chamber. These contaminants may be undesirable for certain applications, such as semiconductor manufacturing or research. Therefore, the choice of vacuum pump and its potential for introducing contaminants should be considered to maintain the required cleanliness and purity of the vacuum chamber.

6. Noise and Vibrations: Vacuum pumps can generate noise and vibrations during operation, which can impact the performance and usability of the vacuum chamber. Excessive noise or vibrations can interfere with delicate experiments, affect the accuracy of measurements, or cause mechanical stress on the chamber components. Selecting vacuum pumps with low noise and vibration levels is important for maintaining optimal chamber performance.

It’s important to note that the specific requirements and performance factors of a vacuum chamber can vary depending on the application. Different types of vacuum pumps, such as rotary vane pumps, dry pumps, or turbomolecular pumps, offer varying capabilities and features that cater to specific needs. The choice of vacuum pump should consider factors such as the desired vacuum level, pumping speed, ultimate vacuum, contamination control, noise and vibration levels, and compatibility with the chamber materials and gases used.

In summary, vacuum pumps have a significant impact on the performance of vacuum chambers. They enable the creation and maintenance of the desired vacuum level, affect the pumping speed and ultimate vacuum achieved, assist in leak detection and gas removal, and influence contamination control. Careful consideration of the vacuum pump selection ensures optimal chamber performance for various applications.

vacuum pump

What Industries Commonly Rely on Vacuum Pump Technology?

Vacuum pump technology finds applications in various industries where creating and controlling vacuum or low-pressure environments is crucial. Here’s a detailed explanation:

1. Manufacturing and Production: Vacuum pumps are extensively used in manufacturing and production processes across multiple industries. They are employed for tasks such as vacuum molding, vacuum packaging, vacuum degassing, vacuum drying, and vacuum distillation. Industries like automotive, aerospace, electronics, pharmaceuticals, and food processing rely on vacuum pump technology to achieve precise and controlled manufacturing conditions.

2. Chemical and Pharmaceutical: The chemical and pharmaceutical industries heavily rely on vacuum pumps for numerous applications. These include solvent recovery, vacuum filtration, vacuum drying, distillation, crystallization, and evaporation. Vacuum pumps enable these industries to carry out critical processes under reduced pressure, ensuring efficient separation, purification, and synthesis of various chemical compounds and pharmaceutical products.

3. Semiconductor and Electronics: The semiconductor and electronics industries extensively use vacuum pumps for manufacturing microchips, electronic components, and electronic devices. Vacuum pumps are crucial in processes such as physical vapor deposition (PVD), chemical vapor deposition (CVD), etching, ion implantation, and sputtering. These processes require controlled vacuum conditions to ensure precise deposition, surface modification, and contamination-free manufacturing.

4. Research and Development: Vacuum pump technology is integral to research and development activities across scientific disciplines. It supports experiments and investigations in fields such as physics, chemistry, materials science, biology, and environmental science. Vacuum pumps facilitate processes like freeze drying, vacuum distillation, vacuum evaporation, vacuum spectroscopy, and creating controlled atmospheric conditions for studying various phenomena.

5. Food and Beverage: The food and beverage industry relies on vacuum pumps for packaging and preservation purposes. Vacuum sealing is used to extend the shelf life of food products by removing air and creating a vacuum-sealed environment that inhibits spoilage and maintains freshness. Vacuum pumps are also used in processes like freeze drying, vacuum concentration, and vacuum cooling.

6. Oil and Gas: In the oil and gas industry, vacuum pumps play a role in various applications. They are used for crude oil vacuum distillation, vacuum drying, vapor recovery, gas compression, and gas stripping processes. Vacuum pumps help maintain optimal conditions during oil refining, gas processing, and petrochemical manufacturing.

7. Environmental and Waste Management: Vacuum pumps are employed in environmental and waste management applications. They are used for tasks such as soil vapor extraction, groundwater remediation, landfill gas recovery, and wastewater treatment. Vacuum pumps facilitate the removal and containment of gases, vapors, and pollutants, contributing to environmental protection and sustainable waste management.

8. Medical and Healthcare: The medical and healthcare sectors utilize vacuum pumps for various purposes. They are used in medical equipment such as vacuum-assisted wound therapy devices, vacuum-based laboratory analyzers, and vacuum suction systems in hospitals and clinics. Vacuum pumps are also used in medical research, pharmaceutical production, and medical device manufacturing.

9. Power Generation: Vacuum pumps play a role in power generation industries, including nuclear power plants and thermal power plants. They are used for steam condensation, turbine blade cooling, vacuum drying during transformer manufacturing, and vacuum systems for testing and maintenance of power plant equipment.

10. HVAC and Refrigeration: The HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries rely on vacuum pumps for system installation, maintenance, and repair. Vacuum pumps are used to evacuate air and moisture from refrigerant lines and HVAC systems, ensuring optimal system performance and efficiency.

These are just a few examples of industries that commonly rely on vacuum pump technology. The versatility and wide-ranging applications of vacuum pumps make them indispensable tools across numerous sectors, enabling precise control over vacuum conditions, efficient manufacturing processes, and scientific investigations.

China factory Vacuum Pump Air Fuel Injection Motor Aquarium Electric Syringe Hydraulic Electric Concrete Mixer and Mini Bicycle Irrigation Vacuum Pump   vacuum pump acChina factory Vacuum Pump Air Fuel Injection Motor Aquarium Electric Syringe Hydraulic Electric Concrete Mixer and Mini Bicycle Irrigation Vacuum Pump   vacuum pump ac
editor by Dream 2024-05-09

China Standard Lab Electric Suction Mini Diaphragm Pump 30 L/Min Laboratory Vacuum Pump Diaphragm with high quality

Product Description

Product Parameters

Model GM-0.33A GM-0.5A GM-0.5B GM-1.0A GM-2 GM-0.5F
Pumping Speed(L/Min) 20 30 30 60 120 30
Ultimate Pressure Vacuum ≥0.08Mpa,200mbar ≥0.08Mpa,200mbar;positive pressure:≥30Psi ≥0.095Mpa,50mbar ≥0.08Mpa,200mbar;positive pressure:≥30Psi ≥0.08Mpa,200mbar ≥0.099Mpa,10mbar
Power(W) 160 160 160 160 300 160
Air Inlet(mm) φ6 φ6 φ6 φ6 φ9 φ6
Air Outlet(mm) Built-in silencing cotton φ6 Silencer φ6 φ9 φ6
Pump Head Quantity 1 1 2 2 2 2
Size(L*W*Hmm) 270*130*210 230*180*265 350*130*220 310*200*210 390*150*250 370*144*275
Working Temperature(ºC) 7-40 7-40 7-40 7-40 7-40 7-40
Pump Temperature(ºC) <55 <55 <55 <55 <55 <55
Weight(kg) 7 7.5 10 10 20 13.5
Diaphragm NBR NBR NBR NBR NBR NBR
Valves NBR NBR NBR NBR NBR NBR
Noise Level (DB) <60 <60 <60 <60 <60 <60
Power Supply 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ

Product Description

“BOTH” GM Series New Diaphragm Vacuum Pump , the parts which contact with the gas are PTFE material , it’s suitable for the corrosive chemical , pharmaceutical , petrochemical gases etc . It’s used for vacuum filtration , reduced pressure distillation , rotary evaporation , vacuum concentration , centrifugal concentration , CHINAMFG phase extraction etc . It’s a very high cost performance product with quality reliability , unique structural design to meet the various needs of the laboratory.

Application
Vacuum Adsorption | Solvent Filtration | Vacuum Distillation | Vacuum Drying | Compressing and Converting Gas |SPE(Solid Phase Extraction) | Deaeration

Company Profile

Packaging & Shipping

FAQ

Q1. What is your products range?
• Industry water chiller, recirculating cooling chiller, rotary evaporator, alcohol recovery equipment, short path distillation kit, glass molecular distillation equipment, falling film evaporator, jacketed glass reactor and other lab equipment.

Q2. Are you trading company or manufacturer?
• We are professional manufacture of lab equipment and we have our own factory.

Q3. Do you provide samples? Is it free?

• Yes, we could offer the sample. Considering the high value of our products, the sample is not free, but we will give you our best price including shipping cost.

Q4. Do you have warranty?
• Yes, we offer 1 year warranty for the spare part.

Q5. How long is your delivery time?
• Generally it is within 7 working days after receiving the payment if the goods are in stock. Or it is 15 working days if thegoods are not in stock, depending on order quantity.

Q6. What is your terms of payment?
• Payment≤15,000USD, 100% in advance. Payment≥15,000USD, 70% T/T in advance, balance before shipment.
(If you are concerned about payment security for the first order, we advise you can place Trade Assurance Order via Alibaba. you will get 100% payment refund if we can’t meet agreed delivery time.)

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service Support
Warranty: 1 Year
Oil or Not: Oil Free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum ovens and freeze-drying processes?

Yes, diaphragm vacuum pumps can be used in both vacuum ovens and freeze-drying processes. Here’s a detailed explanation:

Vacuum Ovens: Vacuum ovens are commonly used in various industries and scientific applications for drying, curing, or processing materials under low-pressure conditions. Diaphragm vacuum pumps are well-suited for vacuum oven applications due to their ability to generate and maintain the required vacuum levels. The diaphragm pump’s design, which does not require oil lubrication, makes it ideal for applications where contamination from oil vapors is a concern. The pumps can efficiently remove air and other gases from the oven chamber, creating a controlled low-pressure environment for the drying or curing process.

When selecting a diaphragm vacuum pump for a vacuum oven, several factors should be considered:

Vacuum Level: The diaphragm pump should be capable of achieving the desired vacuum level required for the specific application. Different diaphragm pump models may have different maximum achievable vacuum levels, so it’s important to choose a pump that meets the oven’s vacuum requirements.

Flow Rate: The flow rate of the diaphragm pump should be sufficient to maintain the desired vacuum level within the oven chamber. The pump’s flow rate should be able to handle any gas released during the drying or curing process and compensate for any minor leaks in the system.

Chemical Compatibility: It’s essential to consider the chemical compatibility of the diaphragm pump’s materials with the substances being processed in the vacuum oven. Some diaphragm pumps are designed with chemically resistant materials, allowing them to handle corrosive or reactive gases without degradation or contamination.

Freeze-Drying Processes: Freeze-drying, also known as lyophilization, is a process used to remove moisture from products while preserving their structure and integrity. Diaphragm vacuum pumps can be employed in freeze-drying systems to create the necessary low-pressure environment for sublimation, where ice is directly converted from solid to vapor without passing through a liquid phase.

In freeze-drying processes, diaphragm vacuum pumps play a crucial role in two main stages:

Freezing Stage: The diaphragm pump can be used to evacuate the moisture or solvent vapors released during the freezing step of the freeze-drying process. By removing these vapors, the pump helps maintain a controlled environment during freezing and prevents ice buildup on the product.

Drying Stage: Once the product is frozen, the diaphragm vacuum pump is utilized to create a vacuum within the freeze-drying chamber. This vacuum environment allows the frozen moisture to sublime, transforming it directly from ice to vapor. The diaphragm pump continuously removes the vapor, aiding in the drying process and facilitating efficient moisture removal from the product.

Similar to vacuum oven applications, when choosing a diaphragm vacuum pump for freeze-drying processes, factors such as vacuum level capability, flow rate, and chemical compatibility should be considered. Additionally, the pump should be able to handle the potential condensable vapors generated during the sublimation process.

In summary, diaphragm vacuum pumps are suitable for use in vacuum ovens and freeze-drying processes. They can effectively create and maintain the required low-pressure environments for drying, curing, and sublimation. When selecting a diaphragm pump for these applications, factors such as vacuum level, flow rate, chemical compatibility, and the presence of condensable vapors should be taken into account to ensure optimal performance and successful operation.

diaphragm vane pump

How do diaphragm vacuum pumps handle condensable vapors and liquids?

Diaphragm vacuum pumps have certain mechanisms in place to handle condensable vapors and liquids encountered during operation. Here’s a detailed explanation:

When diaphragm vacuum pumps encounter condensable vapors or liquids, the following methods are typically employed to handle them:

Condensate Traps: Diaphragm vacuum pumps often incorporate condensate traps in their design. These traps are positioned in the vacuum line and are specifically designed to capture and collect condensable vapors and liquids. The traps typically consist of a cooled surface or a series of baffles that cause the condensable substances to condense and collect in a separate reservoir, preventing them from entering the pump.

Chemical Resistance: Diaphragm pumps are often constructed using materials that are resistant to the corrosive effects of condensable vapors and liquids. Materials such as PTFE (polytetrafluoroethylene) or other chemically resistant polymers are commonly used in the construction of diaphragm pumps to ensure compatibility with various liquids and vapors encountered in different applications.

Separation and Filtration: In some cases, diaphragm vacuum pumps may incorporate separation and filtration mechanisms to handle condensable substances. These mechanisms can include filters or coalescing elements that help to separate the liquid or vapor from the gas stream, allowing the gas to be pumped while preventing the liquid or vapor from entering the pump.

It’s important to note that while diaphragm vacuum pumps can handle condensable vapors and liquids to a certain extent, there are limitations. If the amount of condensable substances is excessive or if the pump is not specifically designed to handle certain types of condensates, it may lead to pump performance issues or damage. In such cases, it may be necessary to implement additional vapor traps, cold traps, or other specialized equipment to effectively manage the condensable substances.

In summary, diaphragm vacuum pumps handle condensable vapors and liquids through the use of condensate traps, chemical-resistant materials, and separation/filtration mechanisms. These features help prevent the condensable substances from entering the pump and ensure reliable and efficient operation.

diaphragm vane pump

What are the typical applications of diaphragm vacuum pumps in laboratories and industries?

Diaphragm vacuum pumps find widespread use in laboratories and various industries due to their versatile capabilities. Here’s a detailed explanation of the typical applications of diaphragm vacuum pumps in laboratories and industries:

In Laboratories:

Laboratory Research and Analysis: Diaphragm vacuum pumps are extensively used in laboratories for various research and analytical applications. They provide vacuum conditions necessary for techniques such as filtration, degassing, rotary evaporation, centrifugation, and vacuum ovens. Diaphragm pumps are also used in analytical instruments like gas chromatographs, mass spectrometers, and vacuum-based sample preparation systems.

Medical and Healthcare: Diaphragm pumps are employed in medical and healthcare settings for applications such as vacuum filtration in microbiology, vacuum aspiration in clinical laboratories, vacuum sealing of sterilized containers, and vacuum drying in medical device manufacturing. They are also used in dental clinics for suction and aspiration procedures.

Environmental Monitoring and Analysis: Diaphragm vacuum pumps play a crucial role in environmental monitoring and analysis. They are used for air sampling, gas collection, and monitoring of pollutants in ambient air or emission sources. Diaphragm pumps are utilized in environmental testing laboratories for sample preparation and analysis, such as water and soil testing.

In Industries:

Vacuum Filtration: Diaphragm vacuum pumps are commonly used in industries for filtration processes. They create a vacuum to draw liquids through a filter medium, separating solids from the liquid. This technique is widely employed in industries such as pharmaceuticals, biotechnology, food and beverage, and chemical processing.

Vacuum Drying and Degassing: Diaphragm pumps facilitate vacuum drying and degassing processes in industries. They help remove moisture or volatile substances from materials or products under vacuum conditions. This is crucial in industries like electronics manufacturing, automotive, aerospace, and materials science.

Automotive and Manufacturing Processes: Diaphragm vacuum pumps find applications in automotive and manufacturing processes. They are used for vacuum-assisted molding, vacuum lifting and handling of objects, vacuum packaging, and vacuum-based testing or leak detection in components and systems.

Semiconductor and Electronics Manufacturing: Diaphragm pumps are extensively utilized in the semiconductor and electronics industry. They provide vacuum conditions for processes such as wafer handling, thin film deposition, etching, and packaging. Diaphragm pumps are preferred due to their oil-free operation, which prevents contamination of sensitive electronic components.

These are some of the typical applications of diaphragm vacuum pumps in laboratories and industries. The versatility, oil-free operation, chemical resistance, and compact design of diaphragm pumps make them suitable for a wide range of applications, contributing to their popularity across various sectors.

China Standard Lab Electric Suction Mini Diaphragm Pump 30 L/Min Laboratory Vacuum Pump Diaphragm   with high quality China Standard Lab Electric Suction Mini Diaphragm Pump 30 L/Min Laboratory Vacuum Pump Diaphragm   with high quality
editor by Dream 2024-05-09

China Standard 6V 12V DC Mini Medical High Pressure Gas Diaphragm Electric Vacuum Pump a/c vacuum pump

Product Description

Micro 12V DC Brush Quiet Medical Use Pressure / Vacuum Pump

Description:
CHINAMFG micro diaphragm pumps and compressors are based on a simple principal, the circular power from the motor is converted into oscillating movement by an eccentric, which moves up and down its central point, this motion is then transferred to a diaphragm by means of a connecting rod, an elastic diaphragm, which in conjunction with an inlet and outlet valve creates a pumping action.

The TM 40 Series offers multiple component configurations allowing them to be used for either vacuum operation, pressure operation, or alternating vacuum and pressure operations.The innovative, compact design incorporates leading edge technologies that allow it to operate harder, quieter and longer, reliabler, highly efficient.

TM 40 pumps can be mounted in any position and can deliver up to 13 l/min, 16L/min (dual head) depending on the model and will operate against pressures of up to 280Kpa.

Specification:

 
 
Model
Pressure Pump Vacuum Pump Rated Voltage No-load Current Max Pressure Max Vacuum Max Flow
  (Item Number) (Item Number) (Vdc) (A) (KPa) (KPa) (L/min)
TM40-B TM40A-B01-12-P22013 TM40A-B01-12-V8013 12 0.7 220 -80 13
  TM40-B02-12-P28016 TM40A-B02-12-V8016 12 1.2 280 -80 16
” P ” means pressure pump, ” V ” means vacuum pump, “12/24” means different voltages optional.
Pump Weight:280g; Pump Size:86*mm*65mm*40.5mm; Inlet&Outlet:OD 6.5mm/ID 3.4mm,hose suggestion:ID 5.0mm
Materials:pump head Nylon, membrane EPDM, valve EPDM
Motor type and code:”B”means economical brush DC motor (reference lifetime ≥1,000hours)

Features:
Highest Performance/Size Ratio
Innovative and efficient engineering designs enable the TM 40 Series to push the performance envelope in a lightweight, compact size.
Performs Quieter
Optimized head, chamber, and flow path reduce noise without compromising performance.
Lasts Reliably Longer

Uncontaminated flow
no contamination of the media due to oil-free operation
Little vibration
Because of leading edge technologies, top quality bearing, superior brushless motor
High level of gas tightness
thanks to stress-optimised structured diaphragm, newly-designed valves and sealing systems, precise placement of the pump head
Extreme chemical resistance
The use of chemically resistant materials optional such as PTFE FKM or other ,material combinations for the parts which allows the corrosive gas to be pumped.
Optimal solution for your application
a wide standard range of materials, motors , voltages configurates multiple components system selected
 

Typical Application:
Industrial pressure and vacuum applications
Portable Analytical Instruments
In vitro diagnostic (IVD) instruments
Biomedical analyzer
Medical Diagnostic Equipment
Air Quality Sampling Monitors
Respiration Monitors
Gas or Odor Leak Detectors  

Dimension(mm) & Curve:

Get sample,please contatc us !

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: RoHS, CE, TUV ISO9001,IATF16949
Voltage: 12V
Power: Electric
Function: Electronic Type
Motor: DC Brush Motor
Materials: Pump Head Nylon, Membrane EPDM / PTFE, Valve EPDM
Samples:
US$ 14/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

diaphragm vane pump

What is the cost range for diaphragm vacuum pumps, and how does it vary with capacity?

The cost range for diaphragm vacuum pumps can vary depending on factors such as the pump’s capacity, quality, features, brand, and supplier. Here’s a detailed explanation:

Cost Range: The cost of diaphragm vacuum pumps can range from a few hundred dollars to several thousand dollars. The specific price will depend on the pump’s size, specifications, and intended application. Smaller diaphragm pumps with lower capacities generally have a lower cost, while larger pumps with higher capacities tend to be more expensive.

It’s important to note that the cost of a diaphragm vacuum pump is not solely determined by its capacity. Other factors, such as the pump’s construction materials, performance characteristics, and additional features, can also influence the price. Pumps with higher-quality materials, advanced design features, and better overall performance may be priced at the higher end of the cost range.

Variation with Capacity: The cost of diaphragm vacuum pumps typically increases with higher capacity. As the capacity of a diaphragm pump increases, there is a need for larger components, more robust construction, and higher power requirements, which can contribute to a higher manufacturing cost. Therefore, larger diaphragm pumps with higher capacities generally have a higher price compared to smaller pumps with lower capacities.

However, it’s worth noting that the relationship between capacity and cost is not always linear. There can be variations in pricing within a given capacity range due to factors such as brand reputation, product features, and market competition. Different manufacturers may offer pumps with similar capacities but at different price points based on their brand positioning, manufacturing processes, and customer support services.

When considering the cost of a diaphragm vacuum pump, it’s important to evaluate the overall value it provides for your specific application. Factors such as pump reliability, durability, maintenance requirements, and warranty coverage should also be taken into account in addition to the initial purchase cost.

In summary, the cost range for diaphragm vacuum pumps can vary significantly depending on factors such as capacity, quality, features, brand, and supplier. Generally, larger pumps with higher capacities tend to have a higher cost compared to smaller pumps. However, variations in pricing can exist within a given capacity range due to factors such as brand reputation and product features. When selecting a diaphragm vacuum pump, it’s important to consider both the cost and the overall value it provides for your specific application.

diaphragm vane pump

What is the noise level produced by diaphragm vacuum pumps during operation?

The noise level produced by diaphragm vacuum pumps during operation can vary depending on factors such as pump design, size, and operating conditions. Here’s a detailed explanation:

Diaphragm vacuum pumps are generally known for their relatively quiet operation compared to other types of vacuum pumps. The noise level produced by diaphragm pumps is typically lower than that of oil-sealed rotary vane pumps or piston pumps.

The noise level is influenced by various factors, including:

Pump Design: The design of the diaphragm pump can affect the noise level. Some pumps are specifically engineered to minimize noise by incorporating features such as noise-reducing materials, vibration dampening mechanisms, or sound insulation.

Pump Size and Power: Larger diaphragm pumps may generate more noise compared to smaller ones due to increased air displacement and higher power requirements. It’s important to consider the specific size and power rating of the pump when evaluating its noise level.

Operating Conditions: The noise level can also be influenced by the operating conditions of the diaphragm pump. Factors such as speed, temperature, and the presence of vibrations or resonances in the system can impact the overall noise output.

While diaphragm vacuum pumps are generally considered to have low noise levels, it’s important to note that individual pump models may have different noise specifications. Manufacturers often provide noise level data in the pump’s technical documentation, which can help in selecting a pump that meets specific noise requirements.

Additionally, it’s worth considering noise reduction measures such as using vibration isolation pads, enclosing the pump in a soundproof housing, or employing remote mounting techniques to further minimize any noise generated by the pump.

In summary, diaphragm vacuum pumps are known for their relatively quiet operation compared to other types of vacuum pumps. However, the actual noise level produced can vary depending on factors such as pump design, size, and operating conditions. Consulting the manufacturer’s specifications and implementing noise reduction measures can help ensure a suitable noise level for the intended application.

diaphragm vane pump

Can diaphragm vacuum pumps handle both corrosive and non-corrosive gases?

Diaphragm vacuum pumps have the capability to handle both corrosive and non-corrosive gases, depending on their design and construction. Here’s a detailed explanation:

Diaphragm pumps are often designed with materials that offer excellent chemical resistance. The wetted parts of the pump, including the diaphragm, valves, and other components that come into contact with the pumped gas, are typically made of chemically resistant materials such as rubber or elastomer. This allows diaphragm vacuum pumps to handle corrosive gases without degradation or contamination.

When used with corrosive gases, it’s essential to ensure that the diaphragm pump is specifically designed and constructed for compatibility with those gases. Different types of diaphragm materials may be available to accommodate various corrosive gases, such as fluorocarbon-based diaphragms for highly aggressive chemicals.

Furthermore, diaphragm pumps can also handle non-corrosive gases effectively. The same chemical resistance that allows them to handle corrosive gases also makes them suitable for non-corrosive gases. Whether it’s vacuum filtration, vacuum drying, degassing, or other applications involving non-corrosive gases, diaphragm pumps can provide reliable and efficient vacuum generation.

It’s important to note that while diaphragm vacuum pumps can handle a wide range of gases, there may be limitations in terms of compatibility with extremely aggressive chemicals or gases at high temperatures or pressures. In such cases, it’s crucial to consult the pump manufacturer’s specifications and guidelines to ensure that the pump is suitable for the specific gas or application.

Overall, diaphragm vacuum pumps offer the advantage of handling both corrosive and non-corrosive gases, making them versatile for various laboratory and industrial applications that involve different types of gases.

China Standard 6V 12V DC Mini Medical High Pressure Gas Diaphragm Electric Vacuum Pump   a/c vacuum pump		China Standard 6V 12V DC Mini Medical High Pressure Gas Diaphragm Electric Vacuum Pump   a/c vacuum pump
editor by Dream 2024-05-03

China high quality Micro Lab Use Oilless Anticorrosive Diaphragm Vacuum Pump / Lab Electric Suction Mini Diaphragm Vacuum Pump vacuum pump ac

Product Description

Product Parameters

Model GM-0.33A GM-0.5A GM-0.5B GM-1.0A GM-2 GM-0.5F
Pumping Speed(L/Min) 20 30 30 60 120 30
Ultimate Pressure Vacuum ≥0.08Mpa,200mbar ≥0.08Mpa,200mbar;positive pressure:≥30Psi ≥0.095Mpa,50mbar ≥0.08Mpa,200mbar;positive pressure:≥30Psi ≥0.08Mpa,200mbar ≥0.099Mpa,10mbar
Power(W) 160 160 160 160 300 160
Air Inlet(mm) φ6 φ6 φ6 φ6 φ9 φ6
Air Outlet(mm) Built-in silencing cotton φ6 Silencer φ6 φ9 φ6
Pump Head Quantity 1 1 2 2 2 2
Size(L*W*Hmm) 270*130*210 230*180*265 350*130*220 310*200*210 390*150*250 370*144*275
Working Temperature(ºC) 7-40 7-40 7-40 7-40 7-40 7-40
Pump Temperature(ºC) <55 <55 <55 <55 <55 <55
Weight(kg) 7 7.5 10 10 20 13.5
Diaphragm NBR NBR NBR NBR NBR NBR
Valves NBR NBR NBR NBR NBR NBR
Noise Level (DB) <60 <60 <60 <60 <60 <60
Power Supply 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ

Product Description

“BOTH” GM Series New Diaphragm Vacuum Pump , the parts which contact with the gas are PTFE material , it’s suitable for the corrosive chemical , pharmaceutical , petrochemical gases etc . It’s used for vacuum filtration , reduced pressure distillation , rotary evaporation , vacuum concentration , centrifugal concentration , CHINAMFG phase extraction etc . It’s a very high cost performance product with quality reliability , unique structural design to meet the various needs of the laboratory.

Application
Vacuum Adsorption | Solvent Filtration | Vacuum Distillation | Vacuum Drying | Compressing and Converting Gas |SPE(Solid Phase Extraction) | Deaeration

Company Profile

Packaging & Shipping

FAQ

Q1. What is your products range?
• Industry water chiller, recirculating cooling chiller, rotary evaporator, alcohol recovery equipment, short path distillation kit, glass molecular distillation equipment, falling film evaporator, jacketed glass reactor and other lab equipment.

Q2. Are you trading company or manufacturer?
• We are professional manufacture of lab equipment and we have our own factory.

Q3. Do you provide samples? Is it free?

• Yes, we could offer the sample. Considering the high value of our products, the sample is not free, but we will give you our best price including shipping cost.

Q4. Do you have warranty?
• Yes, we offer 1 year warranty for the spare part.

Q5. How long is your delivery time?
• Generally it is within 7 working days after receiving the payment if the goods are in stock. Or it is 15 working days if thegoods are not in stock, depending on order quantity.

Q6. What is your terms of payment?
• Payment≤15,000USD, 100% in advance. Payment≥15,000USD, 70% T/T in advance, balance before shipment.
(If you are concerned about payment security for the first order, we advise you can place Trade Assurance Order via Alibaba. you will get 100% payment refund if we can’t meet agreed delivery time.)

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service Support
Warranty: 1 Year
Oil or Not: Oil Free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

diaphragm vane pump

What is the energy consumption and efficiency of diaphragm vacuum pumps?

The energy consumption and efficiency of diaphragm vacuum pumps can vary depending on factors such as the pump design, operating conditions, and specific application requirements. Here’s a detailed explanation:

1. Energy Consumption: Diaphragm vacuum pumps generally have lower energy consumption compared to other types of vacuum pumps, such as rotary vane or oil-sealed pumps. This is primarily because diaphragm pumps operate without oil lubrication, which reduces friction and power requirements. The energy consumption of diaphragm pumps is typically measured in terms of electrical power input, expressed in watts (W) or kilowatts (kW).

The energy consumption of a diaphragm vacuum pump can be influenced by several factors, including:

Pump Size and Capacity: Larger diaphragm pumps designed for higher flow rates or vacuum levels may consume more energy compared to smaller pumps with lower capacities. The power requirements increase as the pump has to move larger volumes of gas or create stronger vacuums.

Operating Pressure: The energy consumption of a diaphragm pump can vary depending on the required operating pressure. Higher vacuum levels typically require more energy to be maintained due to increased resistance in evacuating the gas or air from the system.

Process Conditions: The energy consumption of a diaphragm pump may be affected by process-specific factors, such as the presence of particulate matter or the need for continuous operation. These factors can influence the pump’s efficiency and overall power requirements.

2. Efficiency: The efficiency of a diaphragm vacuum pump refers to its ability to convert electrical power input into useful pumping work. It is typically expressed as a percentage and can be calculated by dividing the pump’s useful output power (in the form of vacuum or flow) by the electrical power input.

The efficiency of diaphragm vacuum pumps can be influenced by various factors:

Pump Design: The design and construction of the diaphragm pump can impact its efficiency. Well-engineered pumps with optimized diaphragm materials and valve systems can achieve higher efficiencies by reducing internal losses and maximizing gas compression and evacuation.

Motor Efficiency: The efficiency of the electric motor driving the diaphragm pump can affect the overall efficiency of the system. Higher motor efficiencies result in more effective power utilization and improved pump performance.

System Optimization: Proper system design, including appropriate sizing, correct piping arrangements, and minimizing pressure losses or leaks, can contribute to improved overall efficiency. Optimizing the system configuration ensures that the pump operates under favorable conditions, maximizing its efficiency.

Operating Conditions: The operating conditions, such as the required vacuum level or flow rate, can impact the efficiency of the diaphragm pump. Operating the pump within its specified range and avoiding excessive demands can help maintain higher efficiency levels.

It’s important to note that specific energy consumption and efficiency values can vary among different diaphragm vacuum pump models and manufacturers. When selecting a diaphragm pump for a particular application, it’s advisable to review the manufacturer’s specifications and performance data, including energy consumption and efficiency information, to make an informed decision.

In summary, diaphragm vacuum pumps generally have lower energy consumption compared to other vacuum pump types. The energy consumption and efficiency of diaphragm pumps can be influenced by factors such as pump size, operating pressure, process conditions, pump design, motor efficiency, system optimization, and operating conditions. Understanding the specific energy consumption and efficiency characteristics of a diaphragm vacuum pump is important for selecting the appropriate pump for a given application and optimizing energy usage.

diaphragm vane pump

How do diaphragm vacuum pumps handle condensable vapors and liquids?

Diaphragm vacuum pumps have certain mechanisms in place to handle condensable vapors and liquids encountered during operation. Here’s a detailed explanation:

When diaphragm vacuum pumps encounter condensable vapors or liquids, the following methods are typically employed to handle them:

Condensate Traps: Diaphragm vacuum pumps often incorporate condensate traps in their design. These traps are positioned in the vacuum line and are specifically designed to capture and collect condensable vapors and liquids. The traps typically consist of a cooled surface or a series of baffles that cause the condensable substances to condense and collect in a separate reservoir, preventing them from entering the pump.

Chemical Resistance: Diaphragm pumps are often constructed using materials that are resistant to the corrosive effects of condensable vapors and liquids. Materials such as PTFE (polytetrafluoroethylene) or other chemically resistant polymers are commonly used in the construction of diaphragm pumps to ensure compatibility with various liquids and vapors encountered in different applications.

Separation and Filtration: In some cases, diaphragm vacuum pumps may incorporate separation and filtration mechanisms to handle condensable substances. These mechanisms can include filters or coalescing elements that help to separate the liquid or vapor from the gas stream, allowing the gas to be pumped while preventing the liquid or vapor from entering the pump.

It’s important to note that while diaphragm vacuum pumps can handle condensable vapors and liquids to a certain extent, there are limitations. If the amount of condensable substances is excessive or if the pump is not specifically designed to handle certain types of condensates, it may lead to pump performance issues or damage. In such cases, it may be necessary to implement additional vapor traps, cold traps, or other specialized equipment to effectively manage the condensable substances.

In summary, diaphragm vacuum pumps handle condensable vapors and liquids through the use of condensate traps, chemical-resistant materials, and separation/filtration mechanisms. These features help prevent the condensable substances from entering the pump and ensure reliable and efficient operation.

diaphragm vane pump

What is a diaphragm vacuum pump, and how does it operate?

A diaphragm vacuum pump is a type of positive displacement pump used to create vacuum or low-pressure conditions in various applications. Here’s a detailed explanation of its operation:

Overview:

A diaphragm vacuum pump consists of a flexible diaphragm that moves back and forth within a chamber. As the diaphragm flexes, it creates changes in the volume of the chamber, resulting in the suction and expulsion of gas. The diaphragm is typically made of a durable, chemically resistant material such as rubber or elastomer.

Operation:

The operation of a diaphragm vacuum pump typically involves the following steps:

1. Suction Phase: The diaphragm starts in a neutral position. When the pump is powered on, the diaphragm is pulled downward by the negative pressure within the chamber. This expansion of the chamber volume creates suction, drawing gas or vapor into the pump through the inlet valve or port.

2. Compression Phase: Once the diaphragm reaches its maximum downward position, the inlet valve closes to prevent backflow. The diaphragm then starts to move upward, reducing the volume of the chamber. This compression action causes the gas to be expelled through the outlet valve or port.

3. Exhaust Phase: As the diaphragm continues to move upward, the outlet valve closes, and the compressed gas is discharged from the pump. The diaphragm returns to its neutral position, ready for the next suction phase.

Features and Advantages:

Diaphragm vacuum pumps offer several features and advantages that make them suitable for various applications:

No Contamination: Diaphragm pumps are designed to be oil-free and have a sealed pumping chamber. This eliminates the risk of oil contamination of the pumped gas or vapor, making them suitable for applications requiring clean and uncontaminated vacuum conditions, such as laboratory work or medical applications.

Chemical Resistance: The diaphragm is typically made of chemically resistant materials, allowing the pump to handle corrosive or reactive gases without degradation or contamination.

Gentle Operation: The pumping action of diaphragm pumps is gentle and pulsation-free, making them suitable for applications that require precise control or sensitive handling of gases or delicate samples.

Quiet Operation: Diaphragm pumps are known for their quiet operation, reducing noise pollution in the working environment.

Self-Priming: Diaphragm pumps are generally self-priming, meaning they can start and maintain their pumping action without the need for external priming or additional equipment.

Compact and Portable: Diaphragm pumps are often compact and lightweight, allowing for easy installation and portability. They can be used as standalone units or integrated into larger systems.

Applications:

Diaphragm vacuum pumps find applications in various industries and fields, including:

– Laboratory research and analysis

– Medical and healthcare

– Environmental monitoring and analysis

– Vacuum filtration

– Vacuum drying and degassing

– Automotive and manufacturing processes

– Semiconductor and electronics manufacturing

It is important to note that the specific design and operation of diaphragm vacuum pumps may vary across different manufacturers and models. Consulting the manufacturer’s specifications and guidelines is recommended for detailed information on the operation, performance, and suitability of a particular diaphragm pump for a given application.

By utilizing the flexible diaphragm’s movement to create suction and compression, diaphragm vacuum pumps offer reliable and efficient vacuum generation for a wide range of applications.

China high quality Micro Lab Use Oilless Anticorrosive Diaphragm Vacuum Pump / Lab Electric Suction Mini Diaphragm Vacuum Pump   vacuum pump acChina high quality Micro Lab Use Oilless Anticorrosive Diaphragm Vacuum Pump / Lab Electric Suction Mini Diaphragm Vacuum Pump   vacuum pump ac
editor by Dream 2024-05-02

China best Industrial Electric Vacuum Pump Diaphragm Mini Pump / Oilless Diaphragm Vacuum Pump vacuum pump adapter

Product Description

Product Parameters

Model HB-20
Voltage / Frequency 220V50HZ
Power 120W
Pump Head Type Two-stage pump
Ultimate Vacuum 6-8mbar
Operating Pressure ≤1bar
Flow ≤20L/Min
Connection Specification 10mm
Medium and Ambient Temperature 5ºC~40ºC
Vacuum Gauge No vacuum regulator
Dimensions (LXWXH) 315x165x210mm
Weight 9.5KG
Relative Humidity ≤80%
Pump Head Material PTFE
Composite Diaphragm Material HNBR+PTFE(Customized)
Valve Material FKM ,FFPM(Customized)
Solid Discharge Valve With
Work System Continuously working
Noise ≤55db
Rated Speed 1450RPM

Product Description

Oil-free Vacuum Diaphragm Pump is a two-stage pump with gas as the medium. All parts in contact with the gas are made of polytetrafluoroethylene (PTFE). It has high corrosion resistance and a wide range of applications. It can completely replace water circulation pumps and is suitable for chemical Treatment of corrosive gases in the pharmaceutical, petrochemical and other industries, such as oil filtration, vacuum distillation, rotary evaporation, vacuum concentration, centrifugal concentration, CHINAMFG extraction, etc.

Company Profile

Packaging & Shipping

FAQ

Q1. What is your products range?
• Industry water chiller, recirculating cooling chiller, rotary evaporator, alcohol recovery equipment, short path distillation kit, glass molecular distillation equipment, falling film evaporator, jacketed glass reactor and other lab equipment.

Q2. Are you trading company or manufacturer?
• We are professional manufacture of lab equipment and we have our own factory.

Q3. Do you provide samples? Is it free?

• Yes, we could offer the sample. Considering the high value of our products, the sample is not free, but we will give you our best price including shipping cost.

Q4. Do you have warranty?
• Yes, we offer 1 year warranty for the spare part.

Q5. How long is your delivery time?
• Generally it is within 7 working days after receiving the payment if the goods are in stock. Or it is 15 working days if thegoods are not in stock, depending on order quantity.

Q6. What is your terms of payment?
• Payment≤15,000USD, 100% in advance. Payment≥15,000USD, 70% T/T in advance, balance before shipment.
(If you are concerned about payment security for the first order, we advise you can place Trade Assurance Order via Alibaba. you will get 100% payment refund if we can’t meet agreed delivery time.)

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service Support
Warranty: 1 Year
Structure: Diaphragm Pump
Vacuum Degree: Low Vacuum
Work Function: Maintain the Pump
Product Name: Oil-Less Diaphragm Vacuum Pump
Customization:
Available

|

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum ovens and freeze-drying processes?

Yes, diaphragm vacuum pumps can be used in both vacuum ovens and freeze-drying processes. Here’s a detailed explanation:

Vacuum Ovens: Vacuum ovens are commonly used in various industries and scientific applications for drying, curing, or processing materials under low-pressure conditions. Diaphragm vacuum pumps are well-suited for vacuum oven applications due to their ability to generate and maintain the required vacuum levels. The diaphragm pump’s design, which does not require oil lubrication, makes it ideal for applications where contamination from oil vapors is a concern. The pumps can efficiently remove air and other gases from the oven chamber, creating a controlled low-pressure environment for the drying or curing process.

When selecting a diaphragm vacuum pump for a vacuum oven, several factors should be considered:

Vacuum Level: The diaphragm pump should be capable of achieving the desired vacuum level required for the specific application. Different diaphragm pump models may have different maximum achievable vacuum levels, so it’s important to choose a pump that meets the oven’s vacuum requirements.

Flow Rate: The flow rate of the diaphragm pump should be sufficient to maintain the desired vacuum level within the oven chamber. The pump’s flow rate should be able to handle any gas released during the drying or curing process and compensate for any minor leaks in the system.

Chemical Compatibility: It’s essential to consider the chemical compatibility of the diaphragm pump’s materials with the substances being processed in the vacuum oven. Some diaphragm pumps are designed with chemically resistant materials, allowing them to handle corrosive or reactive gases without degradation or contamination.

Freeze-Drying Processes: Freeze-drying, also known as lyophilization, is a process used to remove moisture from products while preserving their structure and integrity. Diaphragm vacuum pumps can be employed in freeze-drying systems to create the necessary low-pressure environment for sublimation, where ice is directly converted from solid to vapor without passing through a liquid phase.

In freeze-drying processes, diaphragm vacuum pumps play a crucial role in two main stages:

Freezing Stage: The diaphragm pump can be used to evacuate the moisture or solvent vapors released during the freezing step of the freeze-drying process. By removing these vapors, the pump helps maintain a controlled environment during freezing and prevents ice buildup on the product.

Drying Stage: Once the product is frozen, the diaphragm vacuum pump is utilized to create a vacuum within the freeze-drying chamber. This vacuum environment allows the frozen moisture to sublime, transforming it directly from ice to vapor. The diaphragm pump continuously removes the vapor, aiding in the drying process and facilitating efficient moisture removal from the product.

Similar to vacuum oven applications, when choosing a diaphragm vacuum pump for freeze-drying processes, factors such as vacuum level capability, flow rate, and chemical compatibility should be considered. Additionally, the pump should be able to handle the potential condensable vapors generated during the sublimation process.

In summary, diaphragm vacuum pumps are suitable for use in vacuum ovens and freeze-drying processes. They can effectively create and maintain the required low-pressure environments for drying, curing, and sublimation. When selecting a diaphragm pump for these applications, factors such as vacuum level, flow rate, chemical compatibility, and the presence of condensable vapors should be taken into account to ensure optimal performance and successful operation.

diaphragm vane pump

What is the ultimate vacuum level that diaphragm vacuum pumps can achieve?

Diaphragm vacuum pumps are capable of achieving moderate vacuum levels, but their ultimate vacuum level is limited compared to certain high-performance vacuum pumps. Here’s a detailed explanation:

Typically, diaphragm vacuum pumps can achieve vacuum levels up to about 1 torr or 1 mbar. This level of vacuum is suitable for applications that require low to medium vacuum conditions.

Diaphragm pumps operate based on the reciprocating motion of a flexible diaphragm, which creates the pumping action. However, due to the nature of their design, diaphragm pumps may encounter limitations in achieving extremely high vacuum levels. The diaphragm’s mechanical motion and the presence of clearance gaps in the valves and other internal components can restrict the pump’s ability to reach ultra-high vacuum ranges.

In contrast, other types of vacuum pumps, such as rotary vane pumps or turbo molecular pumps, are specifically designed to achieve much higher vacuum levels. Rotary vane pumps can typically achieve vacuum levels in the range of 10^-3 to 10^-4 torr, while turbo molecular pumps can extend into the ultra-high vacuum range of 10^-9 to 10^-10 torr.

It’s important to consider the specific vacuum level requirements of the application when choosing a vacuum pump. While diaphragm vacuum pumps may have limitations in terms of ultimate vacuum level, they offer other advantages such as oil-free operation, chemical resistance, and cost-effectiveness, making them suitable for a wide range of applications that do not require extreme vacuum levels.

diaphragm vane pump

What are the key components of a diaphragm vacuum pump?

A diaphragm vacuum pump consists of several key components that work together to create vacuum or low-pressure conditions. Here’s a detailed explanation of these components:

1. Diaphragm:

The diaphragm is the central component of a diaphragm vacuum pump. It is a flexible membrane that moves back and forth within a chamber to generate the pumping action. The diaphragm is typically made of a durable, chemically resistant material such as rubber or elastomer. It is responsible for creating changes in the chamber volume, resulting in suction and compression of gases.

2. Pumping Chamber:

The pumping chamber houses the diaphragm and provides the space for the diaphragm’s movement. It is a sealed chamber that expands and contracts as the diaphragm flexes. The pumping chamber is designed to be gas-tight to prevent leakage and maintain the vacuum or low-pressure conditions.

3. Inlet and Outlet Valves:

Diaphragm vacuum pumps typically have inlet and outlet valves that control the flow of gases into and out of the pumping chamber.

Inlet Valve: The inlet valve allows gas or vapor to enter the pumping chamber during the suction phase. It opens when the diaphragm moves downward, creating a low-pressure region within the chamber.

Outlet Valve: The outlet valve allows the compressed gas to be expelled from the pumping chamber during the compression and exhaust phases. It opens when the diaphragm moves upward, compressing the gas and forcing it out of the chamber.

4. Drive Mechanism:

The drive mechanism provides the motion and power to move the diaphragm back and forth within the pumping chamber. It can be an electric motor, a pneumatic actuator, or other mechanisms depending on the pump design. The drive mechanism ensures the continuous operation of the diaphragm, creating the pumping action.

5. Check Valves:

Check valves, also known as one-way valves or non-return valves, are often incorporated into diaphragm vacuum pumps to ensure the flow of gas occurs in the desired direction.

Inlet Check Valve: The inlet check valve allows gas to enter the pumping chamber during the suction phase but prevents backflow when the diaphragm moves upward during compression and exhaust phases.

Outlet Check Valve: The outlet check valve allows the compressed gas to be expelled from the pumping chamber during the compression and exhaust phases but prevents backflow into the chamber during the suction phase.

6. Housing and Mounting:

The housing of a diaphragm vacuum pump encloses and protects the internal components. It is typically made of a sturdy material such as metal or plastic. The housing also provides mounting points for the pump, allowing it to be securely installed in various orientations or integrated into larger systems.

7. Control and Monitoring Features:

Some diaphragm vacuum pumps may include control and monitoring features such as power switches, pressure gauges, or digital interfaces. These features allow for convenient operation, monitoring of vacuum levels, and integration with control systems or automation.

It’s important to note that the specific design and configuration of diaphragm vacuum pumps may vary across different manufacturers and models. Consulting the manufacturer’s specifications and documentation will provide detailed information on the components, construction, and performance characteristics of a particular diaphragm pump.

The combination of the diaphragm, pumping chamber, valves, drive mechanism, check valves, housing, and control features enables diaphragm vacuum pumps to generate efficient and reliable vacuum or low-pressure conditions for a wide range of applications.

China best Industrial Electric Vacuum Pump Diaphragm Mini Pump / Oilless Diaphragm Vacuum Pump   vacuum pump adapter	China best Industrial Electric Vacuum Pump Diaphragm Mini Pump / Oilless Diaphragm Vacuum Pump   vacuum pump adapter
editor by Dream 2024-04-30

China Best Sales DC 24V Inflatable Circulating Electric Mini Diaphragm Vacuum Air Pump vacuum pump

Product Description

DC 24V Inflatable Circulating Electric Mini Diaphragm Vacuum Air Pump

Product Feature:

1. Small, powerful

2. Look attractive, durable Shell

3. Chemical stability, oil-free dry-running, maintenance-free

4. Long life

5. Good sealing, low noise

Technical Parameter:

Rated woltege 12V
Rated power 3.6w
Max pressure 1.5bar
Max current 3 China, HangZhou, ZHangZhoug, China.

ONEREEL is specialized in the design and manufacture Steel Spools, Plastic Spools, Cable roller, Yarn Bobbin,  aluminum spool , Cable Reel Stand,  Sheave Pulley, Cable Conveyor, Hydraulic Puller Tensioner, Gin Poles, Cable Pulling Winch, Safety Tools, Wire Grip, Plastic Parts, and Pump in the industry since 1991. All of our customer spool and wire carrier are engineered and manufactured in our 120,000 square foot state-of-the-art manufacturing plant located in HangZhou, ZHangZhoug.
ONEREEL is specialized in the manufacture of reels for cables and electric wires, iron axles, disc spool for steel cables and various delivery reels. With strong technological capabilities and full series of production equipment. All of our products go through the dynamic and static balance tests. We have passed the quality system certification ISO9001:2000 to ensure the product quality. Following the standards of GB4004-83, JB/T8997, DIN46395 and DIN46397 in productions. 

 

 

Hot Product

Our Customer

 

 

Packaging & Transportation

 

Authoritative Certificate

 

 

FAQ

Q1: Can I get samples?
A: According to spool model and material, we will advise.
Q2: How long is the sample LEAD TIME? 
A: For existing samples, it takes 2-3 days. If no stock, we will advise lead time.
Q3: Can you develop new products?
A: Yes, we have new products developing ability and we are good at developing new mold.
Q4: How much is the freight charge?
A: It depends on spool package volume, if small quantity, volume and urgent goods, 
we may advise FEDEX or other couriers’ charge for your check. 
If volume bigger and by seaway suitable, we provide FOB or CIF price to you.
Q5: What format of the file do you need if I want my own design?
A: We have our own mound workshop and can provide spool or other plastic product developing and injection service.
Q6: How about your service?
A: We have pre-sale service, in-sale service and after-sale service. As “Customer First” is the most important principle of company operation.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Certification: ISO9001:2008, RoHS, CE
Rated Current: 1-4A
Voltage: 12V
Material: Aluminum Alloy
Samples:
US$ 8/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

diaphragm vane pump

What is the energy consumption and efficiency of diaphragm vacuum pumps?

The energy consumption and efficiency of diaphragm vacuum pumps can vary depending on factors such as the pump design, operating conditions, and specific application requirements. Here’s a detailed explanation:

1. Energy Consumption: Diaphragm vacuum pumps generally have lower energy consumption compared to other types of vacuum pumps, such as rotary vane or oil-sealed pumps. This is primarily because diaphragm pumps operate without oil lubrication, which reduces friction and power requirements. The energy consumption of diaphragm pumps is typically measured in terms of electrical power input, expressed in watts (W) or kilowatts (kW).

The energy consumption of a diaphragm vacuum pump can be influenced by several factors, including:

Pump Size and Capacity: Larger diaphragm pumps designed for higher flow rates or vacuum levels may consume more energy compared to smaller pumps with lower capacities. The power requirements increase as the pump has to move larger volumes of gas or create stronger vacuums.

Operating Pressure: The energy consumption of a diaphragm pump can vary depending on the required operating pressure. Higher vacuum levels typically require more energy to be maintained due to increased resistance in evacuating the gas or air from the system.

Process Conditions: The energy consumption of a diaphragm pump may be affected by process-specific factors, such as the presence of particulate matter or the need for continuous operation. These factors can influence the pump’s efficiency and overall power requirements.

2. Efficiency: The efficiency of a diaphragm vacuum pump refers to its ability to convert electrical power input into useful pumping work. It is typically expressed as a percentage and can be calculated by dividing the pump’s useful output power (in the form of vacuum or flow) by the electrical power input.

The efficiency of diaphragm vacuum pumps can be influenced by various factors:

Pump Design: The design and construction of the diaphragm pump can impact its efficiency. Well-engineered pumps with optimized diaphragm materials and valve systems can achieve higher efficiencies by reducing internal losses and maximizing gas compression and evacuation.

Motor Efficiency: The efficiency of the electric motor driving the diaphragm pump can affect the overall efficiency of the system. Higher motor efficiencies result in more effective power utilization and improved pump performance.

System Optimization: Proper system design, including appropriate sizing, correct piping arrangements, and minimizing pressure losses or leaks, can contribute to improved overall efficiency. Optimizing the system configuration ensures that the pump operates under favorable conditions, maximizing its efficiency.

Operating Conditions: The operating conditions, such as the required vacuum level or flow rate, can impact the efficiency of the diaphragm pump. Operating the pump within its specified range and avoiding excessive demands can help maintain higher efficiency levels.

It’s important to note that specific energy consumption and efficiency values can vary among different diaphragm vacuum pump models and manufacturers. When selecting a diaphragm pump for a particular application, it’s advisable to review the manufacturer’s specifications and performance data, including energy consumption and efficiency information, to make an informed decision.

In summary, diaphragm vacuum pumps generally have lower energy consumption compared to other vacuum pump types. The energy consumption and efficiency of diaphragm pumps can be influenced by factors such as pump size, operating pressure, process conditions, pump design, motor efficiency, system optimization, and operating conditions. Understanding the specific energy consumption and efficiency characteristics of a diaphragm vacuum pump is important for selecting the appropriate pump for a given application and optimizing energy usage.

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum filtration setups?

Yes, diaphragm vacuum pumps are commonly used in vacuum filtration setups. Here’s a detailed explanation:

Vacuum filtration is a widely used technique in various fields, including laboratory research, pharmaceutical manufacturing, and industrial processes. It involves applying a vacuum to a filter apparatus to facilitate the separation of solids from liquids or gases.

Diaphragm vacuum pumps are well-suited for vacuum filtration setups due to the following reasons:

Oil-Free Operation: Diaphragm pumps operate without the need for oil lubrication. This oil-free operation is particularly advantageous in vacuum filtration, as it eliminates the risk of oil contamination that could interfere with the filtration process or contaminate the filtrate.

Chemical Compatibility: Diaphragm pumps are available in various chemically resistant materials such as PTFE (polytetrafluoroethylene) or other corrosion-resistant polymers. This allows them to handle a wide range of filtration applications involving different chemicals or solvents without the risk of material degradation.

Adjustable Vacuum Levels: Diaphragm vacuum pumps offer adjustable vacuum levels, allowing users to control and optimize the filtration process. The vacuum level can be adjusted based on the specific filtration requirements, such as the nature of the filter medium, the volume of the sample, or the desired filtration rate.

Compact and Portable: Diaphragm vacuum pumps are often compact and lightweight, making them suitable for benchtop or portable filtration setups. Their small footprint and ease of operation make them convenient for use in various laboratory or field applications.

When using diaphragm vacuum pumps in vacuum filtration setups, it’s important to consider the following factors:

Flow Rate: Diaphragm pumps are available in different flow rate capacities. It’s essential to select a pump with an appropriate flow rate to ensure efficient filtration without excessive filtration time or clogging of the filter media.

Compatibility with Filtration Apparatus: Diaphragm pumps should be compatible with the specific filtration apparatus being used, including the filter flask, filter holder, and associated tubing or connectors. Ensuring proper compatibility and airtight connections is crucial for achieving effective vacuum filtration.

In summary, diaphragm vacuum pumps are well-suited for vacuum filtration setups due to their oil-free operation, chemical compatibility, adjustable vacuum levels, and compact design. They offer reliable and efficient performance in a wide range of filtration applications, making them a popular choice in laboratories, pharmaceutical manufacturing, and industrial processes.

diaphragm vane pump

What are the typical applications of diaphragm vacuum pumps in laboratories and industries?

Diaphragm vacuum pumps find widespread use in laboratories and various industries due to their versatile capabilities. Here’s a detailed explanation of the typical applications of diaphragm vacuum pumps in laboratories and industries:

In Laboratories:

Laboratory Research and Analysis: Diaphragm vacuum pumps are extensively used in laboratories for various research and analytical applications. They provide vacuum conditions necessary for techniques such as filtration, degassing, rotary evaporation, centrifugation, and vacuum ovens. Diaphragm pumps are also used in analytical instruments like gas chromatographs, mass spectrometers, and vacuum-based sample preparation systems.

Medical and Healthcare: Diaphragm pumps are employed in medical and healthcare settings for applications such as vacuum filtration in microbiology, vacuum aspiration in clinical laboratories, vacuum sealing of sterilized containers, and vacuum drying in medical device manufacturing. They are also used in dental clinics for suction and aspiration procedures.

Environmental Monitoring and Analysis: Diaphragm vacuum pumps play a crucial role in environmental monitoring and analysis. They are used for air sampling, gas collection, and monitoring of pollutants in ambient air or emission sources. Diaphragm pumps are utilized in environmental testing laboratories for sample preparation and analysis, such as water and soil testing.

In Industries:

Vacuum Filtration: Diaphragm vacuum pumps are commonly used in industries for filtration processes. They create a vacuum to draw liquids through a filter medium, separating solids from the liquid. This technique is widely employed in industries such as pharmaceuticals, biotechnology, food and beverage, and chemical processing.

Vacuum Drying and Degassing: Diaphragm pumps facilitate vacuum drying and degassing processes in industries. They help remove moisture or volatile substances from materials or products under vacuum conditions. This is crucial in industries like electronics manufacturing, automotive, aerospace, and materials science.

Automotive and Manufacturing Processes: Diaphragm vacuum pumps find applications in automotive and manufacturing processes. They are used for vacuum-assisted molding, vacuum lifting and handling of objects, vacuum packaging, and vacuum-based testing or leak detection in components and systems.

Semiconductor and Electronics Manufacturing: Diaphragm pumps are extensively utilized in the semiconductor and electronics industry. They provide vacuum conditions for processes such as wafer handling, thin film deposition, etching, and packaging. Diaphragm pumps are preferred due to their oil-free operation, which prevents contamination of sensitive electronic components.

These are some of the typical applications of diaphragm vacuum pumps in laboratories and industries. The versatility, oil-free operation, chemical resistance, and compact design of diaphragm pumps make them suitable for a wide range of applications, contributing to their popularity across various sectors.

China Best Sales DC 24V Inflatable Circulating Electric Mini Diaphragm Vacuum Air Pump   vacuum pump	China Best Sales DC 24V Inflatable Circulating Electric Mini Diaphragm Vacuum Air Pump   vacuum pump
editor by Dream 2024-04-29

China Professional High Vacuum Pump Cheap Price Electric Micro Mini Wet Screw Value Buy Vacuum vacuum pump ac system

Product Description

                                       EXTERIOR DESIGN                                                                INTERIOR DESIGN

ZheJiang CHINAMFG Machinery Manufacturing Co. , Ltd. is located in HangZhou, ZheJiang .CHINAMFG is a comprehensive screw air compressor

manufacturer that engaged in R & D, design, production and sales. It has a plant of 20,000 square meters, including a large production workshop,

a comprehensive first-class exhibition hall and a testing laboratory.

CHINAMFG has excellent mechanical engineering designers, an experienced staff team and a professional management team. The production

concept focuses on energy-saving and is committed to perfecting and improving the technological process in order to get the core technology

of super frequency energy-saving, achieving the characteristics of mute, durability, power saving and safety.

The company has 9 series of products with multiple models. Including Fixed speed air compressor, PM VSD air compressor, PM VSD

two-stage air compressor, 4-in-1 air compressor, Oil free water lubrcating air compressor, Diesel portable screw air compressor, Electric

portable screw air compressor, Air dryer, Adsorption machine and the matching spare parts. CHINAMFG adheres to the business philosophy of

cooperation and mutual benefit to provide a one-stop service for every customer!

CHINAMFG air compressors not only cover the domestic market but also are exported to more than 20 countries and regions such as South

Africa, Australia, Thailand, Russia, Argentina, Canada and so on. CHINAMFG products have won a good reputation from users for their excellent

quality and style. The company has always adhered to the concept of quality first, service first and dedication to providing every customer with

excellent products and meticulous after-sales service!

CHINAMFG warmly welcome customers to visit our factory and establish a wide range of cooperation!

Frequency Asked Question:

Q1: Are you factory or trade company?  
A1: We are factory.

Q2: What the exactly address of your factory? 
A2: Our Factory is Located in Xihu (West Lake) Dis. CountyHangZhou CityZheJiang  Province, China.

Q3: Will you provide spare parts of your products? 
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.

Q4: Can you accept OEM orders? 
A4: Yes, with professional design team, OEM orders are highly welcome.

Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.

Q6: Warranty terms of your machine?
A6Two years warranty for the machine and technical support always according to your needs.

Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours
Warranty: 1 Year, 2 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Customization:
Available

|

vacuum pump

What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?

Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:

Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.

Here are some key roles of vacuum pumps in semiconductor manufacturing:

1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.

2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.

3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.

4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.

5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.

6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.

7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.

8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.

Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.

Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.

vacuum pump

How Do Vacuum Pumps Assist in Freeze-Drying Processes?

Freeze-drying, also known as lyophilization, is a dehydration technique used in various industries, including pharmaceutical manufacturing. Vacuum pumps play a crucial role in facilitating freeze-drying processes. Here’s a detailed explanation:

During freeze-drying, vacuum pumps assist in the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. The freeze-drying process involves three main stages: freezing, primary drying (sublimation), and secondary drying (desorption).

1. Freezing: In the first stage, the pharmaceutical product is frozen to a solid state. Freezing is typically achieved by lowering the temperature of the product below its freezing point. The frozen product is then placed in a vacuum chamber.

2. Primary Drying (Sublimation): Once the product is frozen, the vacuum pump creates a low-pressure environment within the chamber. By reducing the pressure, the boiling point of water or solvents present in the frozen product is lowered, allowing them to transition directly from the solid phase to the vapor phase through a process called sublimation. Sublimation bypasses the liquid phase, preventing potential damage to the product’s structure.

The vacuum pump maintains a low-pressure environment by continuously removing the water vapor or solvent vapor generated during sublimation. The vapor is drawn out of the chamber, leaving behind the freeze-dried product. This process preserves the product’s original form, texture, and biological activity.

3. Secondary Drying (Desorption): After the majority of the water or solvents have been removed through sublimation, the freeze-dried product may still contain residual moisture or solvents. In the secondary drying stage, the vacuum pump continues to apply vacuum to the chamber, but at a higher temperature. The purpose of this stage is to remove the remaining moisture or solvents through evaporation.

The vacuum pump maintains the low-pressure environment, allowing the residual moisture or solvents to evaporate at a lower temperature than under atmospheric pressure. This prevents potential thermal degradation of the product. Secondary drying further enhances the stability and shelf life of the freeze-dried pharmaceutical product.

By creating and maintaining a low-pressure environment, vacuum pumps enable efficient and controlled sublimation and desorption during the freeze-drying process. They facilitate the removal of water or solvents while minimizing the potential damage to the product’s structure and preserving its quality. Vacuum pumps also contribute to the overall speed and efficiency of the freeze-drying process by continuously removing the vapor generated during sublimation and evaporation. The precise control provided by vacuum pumps ensures the production of stable and high-quality freeze-dried pharmaceutical products.

vacuum pump

Can Vacuum Pumps Be Used in Food Processing?

Yes, vacuum pumps are widely used in food processing for various applications. Here’s a detailed explanation:

Vacuum pumps play a crucial role in the food processing industry by enabling the creation and maintenance of vacuum or low-pressure environments. They offer several benefits in terms of food preservation, packaging, and processing. Here are some common applications of vacuum pumps in food processing:

1. Vacuum Packaging: Vacuum pumps are extensively used in vacuum packaging processes. Vacuum packaging involves removing air from the packaging container to create a vacuum-sealed environment. This process helps extend the shelf life of food products by inhibiting the growth of spoilage-causing microorganisms and reducing oxidation. Vacuum pumps are used to evacuate the air from the packaging, ensuring a tight seal and maintaining the quality and freshness of the food.

2. Freeze Drying: Vacuum pumps are essential in freeze drying or lyophilization processes used in food processing. Freeze drying involves removing moisture from food products while they are frozen, preserving their texture, flavor, and nutritional content. Vacuum pumps create a low-pressure environment that allows frozen water to directly sublimate from solid to vapor, resulting in the removal of moisture from the food without causing damage or loss of quality.

3. Vacuum Cooling: Vacuum pumps are utilized in vacuum cooling processes for rapid and efficient cooling of food products. Vacuum cooling involves placing the food in a vacuum chamber and reducing the pressure. This lowers the boiling point of water, facilitating the rapid evaporation of moisture and heat from the food, thereby cooling it quickly. Vacuum cooling helps maintain the freshness, texture, and quality of delicate food items such as fruits, vegetables, and bakery products.

4. Vacuum Concentration: Vacuum pumps are employed in vacuum concentration processes in the food industry. Vacuum concentration involves removing excess moisture from liquid food products to increase their solids content. By creating a vacuum, the boiling point of the liquid is reduced, allowing for gentle evaporation of water while preserving the desired flavors, nutrients, and viscosity of the product. Vacuum concentration is commonly used in the production of juices, sauces, and concentrates.

5. Vacuum Mixing and Deaeration: Vacuum pumps are used in mixing and deaeration processes in food processing. In the production of certain food products such as chocolates, confectioneries, and sauces, vacuum mixing is employed to remove air bubbles, achieve homogeneity, and improve product texture. Vacuum pumps aid in the removal of entrapped air and gases, resulting in smooth and uniform food products.

6. Vacuum Filtration: Vacuum pumps are utilized in food processing for vacuum filtration applications. Vacuum filtration involves separating solids from liquids or gases using a filter medium. Vacuum pumps create suction that draws the liquid or gas through the filter, leaving behind the solid particles. Vacuum filtration is commonly used in processes such as clarifying liquids, removing impurities, and separating solids from liquids in the production of beverages, oils, and dairy products.

7. Marinating and Brining: Vacuum pumps are employed in marinating and brining processes in the food industry. By applying a vacuum to the marinating or brining container, the pressure is reduced, allowing the marinade or brine to penetrate the food more efficiently. Vacuum marinating and brining help enhance flavor absorption, reduce marinating time, and improve the overall taste and texture of the food.

8. Controlled Atmosphere Packaging: Vacuum pumps are used in controlled atmosphere packaging (CAP) systems in the food industry. CAP involves modifying the gas composition within food packaging to extend the shelf life and maintain the quality of perishable products. Vacuum pumps aid in the removal of oxygen or other unwanted gases from the package, allowing the introduction of a desired gas mixture that preserves the food’s freshness and inhibits microbial growth.

These are just a few examples of how vacuum pumps are used in food processing. The ability to create and control vacuum or low-pressure environments is a valuable asset in preserving food quality, enhancing shelf life, and facilitating various processing techniques in the food industry.

China Professional High Vacuum Pump Cheap Price Electric Micro Mini Wet Screw Value Buy Vacuum   vacuum pump ac system	China Professional High Vacuum Pump Cheap Price Electric Micro Mini Wet Screw Value Buy Vacuum   vacuum pump ac system
editor by Dream 2024-04-24

China Standard Laboratory Oilless Oil-Free Electric Silent Small Mini Diaphragm Vacuum Pump with Good quality

Product Description

Product Parameters

Model GM-0.33A GM-0.5A GM-0.5B GM-1.0A GM-2 GM-0.5F
Pumping Speed(L/Min) 20 30 30 60 120 30
Ultimate Pressure Vacuum ≥0.08Mpa,200mbar ≥0.08Mpa,200mbar;positive pressure:≥30Psi ≥0.095Mpa,50mbar ≥0.08Mpa,200mbar;positive pressure:≥30Psi ≥0.08Mpa,200mbar ≥0.099Mpa,10mbar
Power(W) 160 160 160 160 300 160
Air Inlet(mm) φ6 φ6 φ6 φ6 φ9 φ6
Air Outlet(mm) Built-in silencing cotton φ6 Silencer φ6 φ9 φ6
Pump Head Quantity 1 1 2 2 2 2
Size(L*W*Hmm) 270*130*210 230*180*265 350*130*220 310*200*210 390*150*250 370*144*275
Working Temperature(ºC) 7-40 7-40 7-40 7-40 7-40 7-40
Pump Temperature(ºC) <55 <55 <55 <55 <55 <55
Weight(kg) 7 7.5 10 10 20 13.5
Diaphragm NBR NBR NBR NBR NBR NBR
Valves NBR NBR NBR NBR NBR NBR
Noise Level (DB) <60 <60 <60 <60 <60 <60
Power Supply 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ

Product Description

“BOTH” GM Series New Diaphragm Vacuum Pump , the parts which contact with the gas are PTFE material , it’s suitable for the corrosive chemical , pharmaceutical , petrochemical gases etc . It’s used for vacuum filtration , reduced pressure distillation , rotary evaporation , vacuum concentration , centrifugal concentration , CHINAMFG phase extraction etc . It’s a very high cost performance product with quality reliability , unique structural design to meet the various needs of the laboratory.

Application
Vacuum Adsorption | Solvent Filtration | Vacuum Distillation | Vacuum Drying | Compressing and Converting Gas |SPE(Solid Phase Extraction) | Deaeration

Company Profile

Packaging & Shipping

FAQ

Q1. What is your products range?
• Industry water chiller, recirculating cooling chiller, rotary evaporator, alcohol recovery equipment, short path distillation kit, glass molecular distillation equipment, falling film evaporator, jacketed glass reactor and other lab equipment.

Q2. Are you trading company or manufacturer?
• We are professional manufacture of lab equipment and we have our own factory.

Q3. Do you provide samples? Is it free?

• Yes, we could offer the sample. Considering the high value of our products, the sample is not free, but we will give you our best price including shipping cost.

Q4. Do you have warranty?
• Yes, we offer 1 year warranty for the spare part.

Q5. How long is your delivery time?
• Generally it is within 7 working days after receiving the payment if the goods are in stock. Or it is 15 working days if thegoods are not in stock, depending on order quantity.

Q6. What is your terms of payment?
• Payment≤15,000USD, 100% in advance. Payment≥15,000USD, 70% T/T in advance, balance before shipment.
(If you are concerned about payment security for the first order, we advise you can place Trade Assurance Order via Alibaba. you will get 100% payment refund if we can’t meet agreed delivery time.)

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service Support
Warranty: 1 Year
Oil or Not: Oil Free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

diaphragm vane pump

What is the energy consumption and efficiency of diaphragm vacuum pumps?

The energy consumption and efficiency of diaphragm vacuum pumps can vary depending on factors such as the pump design, operating conditions, and specific application requirements. Here’s a detailed explanation:

1. Energy Consumption: Diaphragm vacuum pumps generally have lower energy consumption compared to other types of vacuum pumps, such as rotary vane or oil-sealed pumps. This is primarily because diaphragm pumps operate without oil lubrication, which reduces friction and power requirements. The energy consumption of diaphragm pumps is typically measured in terms of electrical power input, expressed in watts (W) or kilowatts (kW).

The energy consumption of a diaphragm vacuum pump can be influenced by several factors, including:

Pump Size and Capacity: Larger diaphragm pumps designed for higher flow rates or vacuum levels may consume more energy compared to smaller pumps with lower capacities. The power requirements increase as the pump has to move larger volumes of gas or create stronger vacuums.

Operating Pressure: The energy consumption of a diaphragm pump can vary depending on the required operating pressure. Higher vacuum levels typically require more energy to be maintained due to increased resistance in evacuating the gas or air from the system.

Process Conditions: The energy consumption of a diaphragm pump may be affected by process-specific factors, such as the presence of particulate matter or the need for continuous operation. These factors can influence the pump’s efficiency and overall power requirements.

2. Efficiency: The efficiency of a diaphragm vacuum pump refers to its ability to convert electrical power input into useful pumping work. It is typically expressed as a percentage and can be calculated by dividing the pump’s useful output power (in the form of vacuum or flow) by the electrical power input.

The efficiency of diaphragm vacuum pumps can be influenced by various factors:

Pump Design: The design and construction of the diaphragm pump can impact its efficiency. Well-engineered pumps with optimized diaphragm materials and valve systems can achieve higher efficiencies by reducing internal losses and maximizing gas compression and evacuation.

Motor Efficiency: The efficiency of the electric motor driving the diaphragm pump can affect the overall efficiency of the system. Higher motor efficiencies result in more effective power utilization and improved pump performance.

System Optimization: Proper system design, including appropriate sizing, correct piping arrangements, and minimizing pressure losses or leaks, can contribute to improved overall efficiency. Optimizing the system configuration ensures that the pump operates under favorable conditions, maximizing its efficiency.

Operating Conditions: The operating conditions, such as the required vacuum level or flow rate, can impact the efficiency of the diaphragm pump. Operating the pump within its specified range and avoiding excessive demands can help maintain higher efficiency levels.

It’s important to note that specific energy consumption and efficiency values can vary among different diaphragm vacuum pump models and manufacturers. When selecting a diaphragm pump for a particular application, it’s advisable to review the manufacturer’s specifications and performance data, including energy consumption and efficiency information, to make an informed decision.

In summary, diaphragm vacuum pumps generally have lower energy consumption compared to other vacuum pump types. The energy consumption and efficiency of diaphragm pumps can be influenced by factors such as pump size, operating pressure, process conditions, pump design, motor efficiency, system optimization, and operating conditions. Understanding the specific energy consumption and efficiency characteristics of a diaphragm vacuum pump is important for selecting the appropriate pump for a given application and optimizing energy usage.

diaphragm vane pump

Are diaphragm vacuum pumps suitable for applications requiring oil-free and contamination-free vacuum?

Yes, diaphragm vacuum pumps are well-suited for applications that require oil-free and contamination-free vacuum conditions. Here’s a detailed explanation:

Diaphragm vacuum pumps are designed to operate without the use of oil lubrication. Instead of oil, these pumps utilize a flexible diaphragm that moves back and forth to create the pumping action. This oil-free operation eliminates the risk of oil contamination in the vacuum system.

By eliminating the need for oil, diaphragm vacuum pumps are particularly advantageous for applications where oil contamination can be detrimental. Here are some examples of applications that benefit from the oil-free operation of diaphragm pumps:

Laboratory Research: In laboratory settings, diaphragm vacuum pumps are commonly used in analytical instruments such as gas chromatographs and mass spectrometers. These instruments require a clean and oil-free vacuum environment to ensure accurate and reliable results.

Pharmaceutical and Biotechnology: Diaphragm pumps are extensively used in pharmaceutical and biotechnology industries for processes such as vacuum filtration, solvent recovery, and sample preparation. These applications demand a contamination-free vacuum to maintain the purity and integrity of the products.

Electronics Manufacturing: In the electronics industry, diaphragm vacuum pumps are employed for various processes, including component handling, pick-and-place operations, and soldering. The oil-free operation of diaphragm pumps prevents oil mist or vapor from contaminating sensitive electronic components.

Food and Beverage Processing: Diaphragm pumps find applications in the food and beverage industry for processes such as vacuum packaging, degassing, and filtration. The oil-free operation ensures that the vacuum does not introduce any unwanted contaminants into the food or beverage products.

It’s important to note that while diaphragm vacuum pumps offer oil-free and contamination-free vacuum conditions, the overall cleanliness of the vacuum system also depends on other components and accessories used in conjunction with the pump. Proper maintenance, regular cleaning, and appropriate filtration mechanisms should be implemented to maintain a high level of cleanliness in the vacuum system.

In summary, diaphragm vacuum pumps are suitable for applications that require oil-free and contamination-free vacuum conditions. Their oil-free operation makes them ideal for applications where oil contamination can compromise product quality, accuracy, or the performance of sensitive equipment.

diaphragm vane pump

Can diaphragm vacuum pumps handle both corrosive and non-corrosive gases?

Diaphragm vacuum pumps have the capability to handle both corrosive and non-corrosive gases, depending on their design and construction. Here’s a detailed explanation:

Diaphragm pumps are often designed with materials that offer excellent chemical resistance. The wetted parts of the pump, including the diaphragm, valves, and other components that come into contact with the pumped gas, are typically made of chemically resistant materials such as rubber or elastomer. This allows diaphragm vacuum pumps to handle corrosive gases without degradation or contamination.

When used with corrosive gases, it’s essential to ensure that the diaphragm pump is specifically designed and constructed for compatibility with those gases. Different types of diaphragm materials may be available to accommodate various corrosive gases, such as fluorocarbon-based diaphragms for highly aggressive chemicals.

Furthermore, diaphragm pumps can also handle non-corrosive gases effectively. The same chemical resistance that allows them to handle corrosive gases also makes them suitable for non-corrosive gases. Whether it’s vacuum filtration, vacuum drying, degassing, or other applications involving non-corrosive gases, diaphragm pumps can provide reliable and efficient vacuum generation.

It’s important to note that while diaphragm vacuum pumps can handle a wide range of gases, there may be limitations in terms of compatibility with extremely aggressive chemicals or gases at high temperatures or pressures. In such cases, it’s crucial to consult the pump manufacturer’s specifications and guidelines to ensure that the pump is suitable for the specific gas or application.

Overall, diaphragm vacuum pumps offer the advantage of handling both corrosive and non-corrosive gases, making them versatile for various laboratory and industrial applications that involve different types of gases.

China Standard Laboratory Oilless Oil-Free Electric Silent Small Mini Diaphragm Vacuum Pump   with Good quality China Standard Laboratory Oilless Oil-Free Electric Silent Small Mini Diaphragm Vacuum Pump   with Good quality
editor by Dream 2024-04-23

China Hot selling CHINAMFG Vacuum 12VDC Electric Mini Air Pump vacuum pump for ac

Product Description

CE Rohs approval Low Price CHINAMFG Reversible Air Pump

12VDC Mini Air Pump FW-180

Features:
Compact size
Steady air outputs with low noise
Very low vibration
Low power consumption
Economical

Application:
CHINAMFG generating system
Medical appliance
Gas sampling

 
About US
HangZhou CITY RUIHUA CABINET WHOLE SET EQUIPMENT is a professional manufacturer of 
low voltage electrical products in South China. 
Our company is committed to design, produce and sale a series of ozone generators air pumps, 
PLC, rotary encoders, HMI, sensors, switches , warning lights, meters and many other electrical 
components. We exports various types of electrical appliances to different countries.

FAQ
Q: Are you a manufacturer or a trade dealer?
A: We are manufacturer with our own factory and trading company.
Q: When did your company start to manufacture the products?
A: We started from the year of 2005.
Q: How can I get some samples?
A: You can send email, buy from our online shop or call us for sample order.
Q:.Can I just buy 1pc sample first or small order?
A:Yes,support sample order and small order, especially for new customers.
Q:.How long to make a sample?
A: We have plenty of stock to support sample order and small order.
Q: Is the sample fee refundable or not?
A:Due to the producing cost is high, we need charge sample fee.
Q:What certification do you have?
A:We have got CE, RoHS certification for our products.
Q:Can I put my own logo?
A:Yes, your logo can be engraved, embossed, transfer-printing or lasered etc.
Q:Is the price including duty?
A: This price does not include customs fee, local taxes, or brokerage fee.
Q:How good is your service and after-sales service?
A: We have excellent customer service & technical support &1-year warranty to meet all your requirements.
Q: How do your company regard on quality control?
A:Quality is priority. We think highly of quality controlling.

About Payment
 
We provided Trade Assurance service 
We also accept payment by T/T; Western Union, ESCROW, Paypal, Money gram
 
We Provide OEM Services
We can do OEM for your brand (print your logo ). And we can make product according to your design .
The processing method ,the size ,the quality etc ,will all follow your requirement .
 
We do OEM for a lot of the world’s leading brands ,we have rich experience in production. We have molds in varieties ,and we have strict  products quality control system.
 
We have a strong R&D team, to develop new products according to the sample you provided.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1
Warranty: 1
Certification: RoHS, CE
Samples:
US$ 3.88/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum ovens and freeze-drying processes?

Yes, diaphragm vacuum pumps can be used in both vacuum ovens and freeze-drying processes. Here’s a detailed explanation:

Vacuum Ovens: Vacuum ovens are commonly used in various industries and scientific applications for drying, curing, or processing materials under low-pressure conditions. Diaphragm vacuum pumps are well-suited for vacuum oven applications due to their ability to generate and maintain the required vacuum levels. The diaphragm pump’s design, which does not require oil lubrication, makes it ideal for applications where contamination from oil vapors is a concern. The pumps can efficiently remove air and other gases from the oven chamber, creating a controlled low-pressure environment for the drying or curing process.

When selecting a diaphragm vacuum pump for a vacuum oven, several factors should be considered:

Vacuum Level: The diaphragm pump should be capable of achieving the desired vacuum level required for the specific application. Different diaphragm pump models may have different maximum achievable vacuum levels, so it’s important to choose a pump that meets the oven’s vacuum requirements.

Flow Rate: The flow rate of the diaphragm pump should be sufficient to maintain the desired vacuum level within the oven chamber. The pump’s flow rate should be able to handle any gas released during the drying or curing process and compensate for any minor leaks in the system.

Chemical Compatibility: It’s essential to consider the chemical compatibility of the diaphragm pump’s materials with the substances being processed in the vacuum oven. Some diaphragm pumps are designed with chemically resistant materials, allowing them to handle corrosive or reactive gases without degradation or contamination.

Freeze-Drying Processes: Freeze-drying, also known as lyophilization, is a process used to remove moisture from products while preserving their structure and integrity. Diaphragm vacuum pumps can be employed in freeze-drying systems to create the necessary low-pressure environment for sublimation, where ice is directly converted from solid to vapor without passing through a liquid phase.

In freeze-drying processes, diaphragm vacuum pumps play a crucial role in two main stages:

Freezing Stage: The diaphragm pump can be used to evacuate the moisture or solvent vapors released during the freezing step of the freeze-drying process. By removing these vapors, the pump helps maintain a controlled environment during freezing and prevents ice buildup on the product.

Drying Stage: Once the product is frozen, the diaphragm vacuum pump is utilized to create a vacuum within the freeze-drying chamber. This vacuum environment allows the frozen moisture to sublime, transforming it directly from ice to vapor. The diaphragm pump continuously removes the vapor, aiding in the drying process and facilitating efficient moisture removal from the product.

Similar to vacuum oven applications, when choosing a diaphragm vacuum pump for freeze-drying processes, factors such as vacuum level capability, flow rate, and chemical compatibility should be considered. Additionally, the pump should be able to handle the potential condensable vapors generated during the sublimation process.

In summary, diaphragm vacuum pumps are suitable for use in vacuum ovens and freeze-drying processes. They can effectively create and maintain the required low-pressure environments for drying, curing, and sublimation. When selecting a diaphragm pump for these applications, factors such as vacuum level, flow rate, chemical compatibility, and the presence of condensable vapors should be taken into account to ensure optimal performance and successful operation.

diaphragm vane pump

Are diaphragm vacuum pumps suitable for applications requiring oil-free and contamination-free vacuum?

Yes, diaphragm vacuum pumps are well-suited for applications that require oil-free and contamination-free vacuum conditions. Here’s a detailed explanation:

Diaphragm vacuum pumps are designed to operate without the use of oil lubrication. Instead of oil, these pumps utilize a flexible diaphragm that moves back and forth to create the pumping action. This oil-free operation eliminates the risk of oil contamination in the vacuum system.

By eliminating the need for oil, diaphragm vacuum pumps are particularly advantageous for applications where oil contamination can be detrimental. Here are some examples of applications that benefit from the oil-free operation of diaphragm pumps:

Laboratory Research: In laboratory settings, diaphragm vacuum pumps are commonly used in analytical instruments such as gas chromatographs and mass spectrometers. These instruments require a clean and oil-free vacuum environment to ensure accurate and reliable results.

Pharmaceutical and Biotechnology: Diaphragm pumps are extensively used in pharmaceutical and biotechnology industries for processes such as vacuum filtration, solvent recovery, and sample preparation. These applications demand a contamination-free vacuum to maintain the purity and integrity of the products.

Electronics Manufacturing: In the electronics industry, diaphragm vacuum pumps are employed for various processes, including component handling, pick-and-place operations, and soldering. The oil-free operation of diaphragm pumps prevents oil mist or vapor from contaminating sensitive electronic components.

Food and Beverage Processing: Diaphragm pumps find applications in the food and beverage industry for processes such as vacuum packaging, degassing, and filtration. The oil-free operation ensures that the vacuum does not introduce any unwanted contaminants into the food or beverage products.

It’s important to note that while diaphragm vacuum pumps offer oil-free and contamination-free vacuum conditions, the overall cleanliness of the vacuum system also depends on other components and accessories used in conjunction with the pump. Proper maintenance, regular cleaning, and appropriate filtration mechanisms should be implemented to maintain a high level of cleanliness in the vacuum system.

In summary, diaphragm vacuum pumps are suitable for applications that require oil-free and contamination-free vacuum conditions. Their oil-free operation makes them ideal for applications where oil contamination can compromise product quality, accuracy, or the performance of sensitive equipment.

diaphragm vane pump

What are the advantages of using diaphragm vacuum pumps in various applications?

Diaphragm vacuum pumps offer several advantages that make them well-suited for various applications. Here’s a detailed explanation of the advantages:

1. Oil-Free and Contamination-Free Operation:

Diaphragm vacuum pumps are designed to be oil-free, meaning they do not require lubricating oil for operation. This eliminates the risk of oil contamination in the pumped gas or vapor, making them ideal for applications that require clean and uncontaminated vacuum conditions. Industries such as laboratory research, medical and healthcare, and semiconductor manufacturing benefit from the oil-free operation of diaphragm pumps.

2. Chemical Resistance:

Diaphragm pumps are typically constructed with materials that offer excellent chemical resistance. The diaphragm, valves, and other wetted parts are often made of chemically resistant materials such as rubber or elastomer. This allows diaphragm vacuum pumps to handle corrosive or reactive gases without degradation or contamination, making them suitable for applications in chemical processing, environmental monitoring, and analytical laboratories.

3. Gentle and Pulsation-Free Operation:

Diaphragm pumps provide a gentle pumping action that is free from pulsations. This characteristic is particularly advantageous in applications that require precise control or sensitive handling of gases or delicate samples. Examples include vacuum filtration, vacuum drying, degassing processes, and laboratory applications where consistent and smooth vacuum conditions are necessary.

4. Quiet Operation:

Diaphragm vacuum pumps are known for their quiet operation compared to other types of pumps. The reduced noise level contributes to a more comfortable working environment, making them suitable for applications where noise pollution needs to be minimized, such as laboratories, medical facilities, and research institutions.

5. Self-Priming Capability:

Diaphragm pumps are generally self-priming, meaning they can start and maintain their pumping action without the need for external priming or additional equipment. This makes them easy to use and convenient, especially in applications where frequent start-stop cycles or intermittent operation is required.

6. Compact and Portable:

Diaphragm vacuum pumps are often compact and lightweight, making them easy to install, move, or transport. Their compact size allows for flexible integration into existing systems or placement in confined spaces. The portability of diaphragm pumps is advantageous in applications that require mobility or where multiple pumping stations are needed in different locations.

7. Versatile Applications:

Diaphragm vacuum pumps find applications in a wide range of industries and fields. Some common applications include:

– Laboratory research and analysis

– Medical and healthcare

– Environmental monitoring and analysis

– Vacuum filtration

– Vacuum drying and degassing

– Automotive and manufacturing processes

– Semiconductor and electronics manufacturing

It’s important to note that the specific advantages of using diaphragm vacuum pumps can vary depending on the pump design, model, and application requirements. Manufacturers provide detailed specifications and guidelines that highlight the advantages and limitations of their diaphragm pumps for specific applications.

China Hot selling CHINAMFG Vacuum 12VDC Electric Mini Air Pump   vacuum pump for ac	China Hot selling CHINAMFG Vacuum 12VDC Electric Mini Air Pump   vacuum pump for ac
editor by Dream 2024-04-23

China manufacturer Mini DC Diaphragm Metering 6V Wear-Resistant Flat Head Vacuum Pump for Electric Breast Pump a/c vacuum pump

Product Description

Product Description

 

Features
1. Life: Expected life span is >=30,000 Times(on 10s/off 5s).

2. Low noise: ≤60dB, far from 30cm distance.

3. Working conditions: Applying to indoor and outdoor under temperature 60 deg C.

4. Have suction function. can run continuously.

5. It can be powered directly by a Solar panel, DC electric source, or battery.

Dimensional drawing and working curve diagram
 

Widely used for Home appliances,medical,blackhead meters, breast pumps, vacuum packaging machines, massage
machines, foam hand sanitizers, teeth flushers and other products; household appliances, medical treatment, beauty,
massagers,adult products,Sphygmomanometers, Essential oil machines,Booster technology etc. Industries

We supply Full Customization Service, please contact us for the details.

Certifications

 

Our Advantages

 

FAQ

 

Do you accept OEM/ODM Service?
Yes, we have been the professional OEM/ODM supplier for many years.

What’s your main products?
Brushless dc water pump, drinking pump, solar pump, submersible pump, centrifugal pump, diaphragm pump, booster
pump, etc… for many years we develop the products with our client together, also customize the products they want.

How can I choose the pump?
We can study together for the using purpose, specification in the working condition, then we will suggest you the
most suitable 1 from our products range.

What’s your product MOQ?
We accept sample order, the MOQ can be negotiated.

How long is your delivery time?
Sample order within 1 week. Bulk order within 25 days. If the pumps in stock, within2 days.

How long is your warranty of pump?

Warranty is 1 year, can be repaired free of charge

What’s the payment method?
By Trade Assurance, Paypal, T/T, L/C, Western Union, etc…

What certificates have your pumps passed?
All our products have passed CE, RoHs, Reach. Parts of pumps met UL.

How do you ship the goods?
Shipping by express (sample order) and by air or by sea (bulk order). Pls contact us before order because the freight
fee base on quantity

What’s your port of loading?
HangZhou port, HangZhou port, HangZhou port, for other we can communicate it.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Certification: RoHS, CE
Rated Current: 1-4A
Voltage: Low Pressure
Material: ABS
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum ovens and freeze-drying processes?

Yes, diaphragm vacuum pumps can be used in both vacuum ovens and freeze-drying processes. Here’s a detailed explanation:

Vacuum Ovens: Vacuum ovens are commonly used in various industries and scientific applications for drying, curing, or processing materials under low-pressure conditions. Diaphragm vacuum pumps are well-suited for vacuum oven applications due to their ability to generate and maintain the required vacuum levels. The diaphragm pump’s design, which does not require oil lubrication, makes it ideal for applications where contamination from oil vapors is a concern. The pumps can efficiently remove air and other gases from the oven chamber, creating a controlled low-pressure environment for the drying or curing process.

When selecting a diaphragm vacuum pump for a vacuum oven, several factors should be considered:

Vacuum Level: The diaphragm pump should be capable of achieving the desired vacuum level required for the specific application. Different diaphragm pump models may have different maximum achievable vacuum levels, so it’s important to choose a pump that meets the oven’s vacuum requirements.

Flow Rate: The flow rate of the diaphragm pump should be sufficient to maintain the desired vacuum level within the oven chamber. The pump’s flow rate should be able to handle any gas released during the drying or curing process and compensate for any minor leaks in the system.

Chemical Compatibility: It’s essential to consider the chemical compatibility of the diaphragm pump’s materials with the substances being processed in the vacuum oven. Some diaphragm pumps are designed with chemically resistant materials, allowing them to handle corrosive or reactive gases without degradation or contamination.

Freeze-Drying Processes: Freeze-drying, also known as lyophilization, is a process used to remove moisture from products while preserving their structure and integrity. Diaphragm vacuum pumps can be employed in freeze-drying systems to create the necessary low-pressure environment for sublimation, where ice is directly converted from solid to vapor without passing through a liquid phase.

In freeze-drying processes, diaphragm vacuum pumps play a crucial role in two main stages:

Freezing Stage: The diaphragm pump can be used to evacuate the moisture or solvent vapors released during the freezing step of the freeze-drying process. By removing these vapors, the pump helps maintain a controlled environment during freezing and prevents ice buildup on the product.

Drying Stage: Once the product is frozen, the diaphragm vacuum pump is utilized to create a vacuum within the freeze-drying chamber. This vacuum environment allows the frozen moisture to sublime, transforming it directly from ice to vapor. The diaphragm pump continuously removes the vapor, aiding in the drying process and facilitating efficient moisture removal from the product.

Similar to vacuum oven applications, when choosing a diaphragm vacuum pump for freeze-drying processes, factors such as vacuum level capability, flow rate, and chemical compatibility should be considered. Additionally, the pump should be able to handle the potential condensable vapors generated during the sublimation process.

In summary, diaphragm vacuum pumps are suitable for use in vacuum ovens and freeze-drying processes. They can effectively create and maintain the required low-pressure environments for drying, curing, and sublimation. When selecting a diaphragm pump for these applications, factors such as vacuum level, flow rate, chemical compatibility, and the presence of condensable vapors should be taken into account to ensure optimal performance and successful operation.

diaphragm vane pump

What are the maintenance requirements for diaphragm vacuum pumps, and are they user-friendly?

Diaphragm vacuum pumps have specific maintenance requirements to ensure optimal performance and longevity. Here’s a detailed explanation:

Maintenance requirements for diaphragm vacuum pumps typically include the following:

Regular Inspection: Diaphragm pumps should be inspected regularly to check for any signs of wear, damage, or leaks. This includes inspecting the diaphragms, valves, seals, and other critical components for integrity and proper functioning. Regular inspections help identify and address potential issues before they escalate into more significant problems.

Cleaning: Keeping the pump clean is essential for efficient operation. It involves removing any accumulated dust, dirt, or debris from the pump’s exterior and ensuring that the air intake and exhaust ports are free from obstructions. Cleaning should be performed according to the manufacturer’s recommendations using appropriate cleaning agents and techniques.

Diaphragm Replacement: Over time, diaphragms in diaphragm vacuum pumps may wear out or become damaged. Regularly replacing worn or damaged diaphragms is crucial to maintain the pump’s performance. The frequency of diaphragm replacement depends on factors such as operating conditions, usage intensity, and the manufacturer’s recommendations.

Lubrication: Some diaphragm pumps may require lubrication for certain components, such as bearings or moving parts. However, many diaphragm pumps are designed to operate without the need for lubrication, offering the advantage of reduced maintenance and eliminating the risk of oil contamination in sensitive applications.

Seal Replacement: The seals used in diaphragm vacuum pumps may require periodic replacement to ensure airtight operation and prevent air leakage. The frequency of seal replacement depends on factors such as operating conditions and the manufacturer’s recommendations. It’s important to use high-quality replacement seals to maintain the pump’s performance and prevent any compromise in vacuum levels.

As for user-friendliness, diaphragm vacuum pumps are generally considered to be user-friendly due to the following reasons:

Ease of Operation: Diaphragm pumps are designed for straightforward operation, typically involving simple on/off switches or control knobs. They often have intuitive interfaces that make them easy to use, even for individuals with limited technical expertise.

Compact and Portable: Diaphragm vacuum pumps are often compact and lightweight, making them easy to handle and move around. Their small size and portable nature contribute to their user-friendliness, especially in applications where mobility is important.

Minimal Maintenance: Compared to some other types of vacuum pumps, diaphragm pumps generally have lower maintenance requirements. They often do not require oil changes or complex maintenance procedures, reducing the time and effort needed for upkeep.

Clear Documentation: Manufacturers provide user manuals and documentation that outline maintenance procedures, troubleshooting guides, and safety precautions. These resources help users understand the maintenance requirements and ensure that the pumps are operated and maintained correctly.

While diaphragm vacuum pumps are generally user-friendly, it’s important to note that proper training and adherence to safety guidelines are still necessary to ensure safe and effective operation. Following the manufacturer’s instructions and seeking professional assistance when needed are essential for maintaining the pump’s performance and extending its lifespan.

In summary, diaphragm vacuum pumps have specific maintenance requirements, including regular inspection, cleaning, diaphragm replacement, and seal replacement. They are generally considered user-friendly due to their ease of operation, compact design, minimal maintenance needs, and clear documentation provided by manufacturers.

diaphragm vane pump

What are the typical applications of diaphragm vacuum pumps in laboratories and industries?

Diaphragm vacuum pumps find widespread use in laboratories and various industries due to their versatile capabilities. Here’s a detailed explanation of the typical applications of diaphragm vacuum pumps in laboratories and industries:

In Laboratories:

Laboratory Research and Analysis: Diaphragm vacuum pumps are extensively used in laboratories for various research and analytical applications. They provide vacuum conditions necessary for techniques such as filtration, degassing, rotary evaporation, centrifugation, and vacuum ovens. Diaphragm pumps are also used in analytical instruments like gas chromatographs, mass spectrometers, and vacuum-based sample preparation systems.

Medical and Healthcare: Diaphragm pumps are employed in medical and healthcare settings for applications such as vacuum filtration in microbiology, vacuum aspiration in clinical laboratories, vacuum sealing of sterilized containers, and vacuum drying in medical device manufacturing. They are also used in dental clinics for suction and aspiration procedures.

Environmental Monitoring and Analysis: Diaphragm vacuum pumps play a crucial role in environmental monitoring and analysis. They are used for air sampling, gas collection, and monitoring of pollutants in ambient air or emission sources. Diaphragm pumps are utilized in environmental testing laboratories for sample preparation and analysis, such as water and soil testing.

In Industries:

Vacuum Filtration: Diaphragm vacuum pumps are commonly used in industries for filtration processes. They create a vacuum to draw liquids through a filter medium, separating solids from the liquid. This technique is widely employed in industries such as pharmaceuticals, biotechnology, food and beverage, and chemical processing.

Vacuum Drying and Degassing: Diaphragm pumps facilitate vacuum drying and degassing processes in industries. They help remove moisture or volatile substances from materials or products under vacuum conditions. This is crucial in industries like electronics manufacturing, automotive, aerospace, and materials science.

Automotive and Manufacturing Processes: Diaphragm vacuum pumps find applications in automotive and manufacturing processes. They are used for vacuum-assisted molding, vacuum lifting and handling of objects, vacuum packaging, and vacuum-based testing or leak detection in components and systems.

Semiconductor and Electronics Manufacturing: Diaphragm pumps are extensively utilized in the semiconductor and electronics industry. They provide vacuum conditions for processes such as wafer handling, thin film deposition, etching, and packaging. Diaphragm pumps are preferred due to their oil-free operation, which prevents contamination of sensitive electronic components.

These are some of the typical applications of diaphragm vacuum pumps in laboratories and industries. The versatility, oil-free operation, chemical resistance, and compact design of diaphragm pumps make them suitable for a wide range of applications, contributing to their popularity across various sectors.

China manufacturer Mini DC Diaphragm Metering 6V Wear-Resistant Flat Head Vacuum Pump for Electric Breast Pump   a/c vacuum pump		China manufacturer Mini DC Diaphragm Metering 6V Wear-Resistant Flat Head Vacuum Pump for Electric Breast Pump   a/c vacuum pump
editor by Dream 2024-04-23