Tag Archives: vacuum pump for laboratory

China Best Sales -26hg’ ’ Silent Oilless Vacuum Pump for Laboratory Cleaning vacuum pump adapter

Product Description

Product Parameters

Complete solution leader in oilless air pump field
 

* Oilless operation
* Permanently lubricated bearings
* High performance piston seal
* Die-cast aluminum components
* Thin wall, hard coated aluminum cylinder
* Dynamically balanced
* Twin headed rock piston
* RoHS compliant
* Safety ETL certificated

NOTE: All test values are nominal and for reference only. They are not guaranteed maximum or minimum limits, nor do they imply mean or median.
Model Number SMV-50
Performance Data  
Head configuration Pressure parallel flow
Nominal voltage/frequency 220V/50HZ
Max. Current 0.75A
Max. Power 160W
Max. Flow 50L/MIN
Max. Vacuum -88Kpa
Speed at rated load 1400RPM
Noise <52dB
Max.Pressure restart 0 PSI
Electrical Data  
Motor type[Capacitance] P.S.C(4.5uF)
Motor insulation class B
Thermal switch[Open temperature] Thermally protected(145°C)
Line lead wire color,gauge Brown(hot),blue(neutral),18AWG
Capacitor lead wire color,gauge Black,black,18 AWG
General Data  
Operating ambient air temperature 50° to 104°F(10° to 40°C)
Safety certification ETL
Dimension(LXWXH) 168X99X150 MM
Installation size 105X70 MM
Net weight 3.5KG
Application Medical suctions, lab,vacuum packaing etc.

Detailed Photos

Our Advantages

 

*Bearing

1.Standard product with ERB bearing, 14000 hours operation. 2.Customized imported TPI/NSK bearing

*Motor

1.The coil adopts the fine pure copper enameled wire. 2.The rotor adopts the famous brand silicon steel sheet such as ZheJiang baosteel.

 *Valve

1.The valve steel of Sweden SANDVIK; Good flexibility and long durability. 2.Thickness from 0.08mm to 1.2mm, suitable for maximum pressure from 0.8 MPa to 1.2 MPa.

*Piston ring

1.Wear-resistant high temperature; Ensure more than 10,000 hours of service life. 2.Customized imported piston ring.

 

Product Application

 

 

Our manufacturing process

 

We design and produce all main parts by ourselves, along with the standard procedure and test equipment, so we can better control the quality and cost.Our factory starts from die-casting of aluminium, motor production, precision finishing, automatic assembly of pumps, the capacity is 300,000 units per month,we provide OEM/ODM service so that can better achieve high-end customization and development for customers.

Our company possess strong technical research and development force, owns self-design and new product development capabilities, we concentrate on building a “flagship type” enterprise with the whole series of product  lines of domestic and international medical use oilless air pumps.Technological innovation is the source of enterprise’s high quality development. We have a complete set of testing laboratories such as motor lab,high and low temperature lab,ROHS lab and Life test etc.

Our factory owns 8 motor production lines,16 aluminum die-casting machines, more than 150 high precision CNC lathes and more than 20 CNC machines. From the essential motor design to the entire design of the pump, it has been professionally tested, verified and validated, Our factory has full vertical integration for whole supply chain,So the quality can be firmly controlled by ourselves. 
 

Our Service

 

Certifications

 

We specialize in the designing and manufacturing various kinds of oil free air compressor, vacuum pump since 2571,especially for medical applicaton,we are the vendor of Omron, Panasonic,Invacare, Nidek Medical etc.

Strive for survival by quality, seek benefits from management. Our company regards product quality as the life and continuous pursuit of the enterprise. Our company complies with the requirements of, implements the standardized management of R&D,production,quality assurance and production services, and sets up the strict operation specifications and procedures for each process. Our products have passed the ETL,CE,CCC and other certifications, CZPT the leading level in the world.Our company has more than 20 invention patents and utility patents. Our company has acquired the certifications of “National High-Tech Enterprises”,”ZheJiang Private Science and Technology Enterprises”,”ZheJiang Engineering Technology Center” and so on.

We are dedicated to working with the global intelligent product brand owners, retailers and distributors to establish a CZPT long-term OEM / ODM business partnerships. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: on Line Support and Free Spare Parts
Air Flow: 50 L/Min
Vacuum: -88kpa
Samples:
US$ 75/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Vacuum Pump

Basic knowledge of vacuum pump

A vacuum pump is used to create a relative vacuum within a sealed volume. These pumps take gas molecules out of the sealed volume and expel them, leaving a partial vacuum. They can be used in a variety of applications, including medicine and laboratory research. This article will cover the basics of vacuum pumps, including how they operate and the materials they use. You will also learn about typical applications and fees.

How it works

A vacuum pump is a pump that removes air from a specific space. These pumps are divided into three types according to their function. Positive displacement pumps are used in the low vacuum range and high vacuum pumps are used in the ultra-high vacuum range. The performance of a vacuum pump depends on the quality of the vacuum it produces.
A vacuum pump creates a partial vacuum above the surrounding atmospheric pressure. The speed of the pump is proportional to the pressure difference between the ambient atmosphere and the base pressure of the pump. Choose a base pressure for a specific process, not the lowest possible pressure in the system.
A scroll pump is also a type of vacuum pump. This type of pump consists of two scrolls, the inner scroll running around the gas volume. It then compresses the gas in a spiral fashion until it reaches the maximum pressure at its center. The inner and outer scrolls are separated by a polymer tip seal that provides an axial seal between them. Its pumping speed ranges from 5.0 to 46 m3/h.
Another type of vacuum pump is the screw pump, which uses two rotating screws in one chamber. The screw in the screw pump is a left-handed screw, and the other is a right-handed screw. The two screws do not touch each other when engaged, preventing contamination of the medium. They also feature high pumping speeds, low operating costs and low maintenance requirements.
The vacuum pump consists of several parts such as rotor and base. These components create an area of ​​low pressure. Gas and water molecules rush into this low pressure area, where they are sucked into the pump. The pump also rotates, preventing fluid leakage to the low pressure side.
The main function of a vacuum pump is to remove gas particles from an enclosed space. It does this by changing gas molecules between high and low pressure states. A vacuum pump can also generate a partial vacuum. There are several types of vacuum pumps, each designed to perform a specific function, so it is important to choose the right type for your application.

Vacuum Pump Materials

There are two main materials used in vacuum pumps: metal and polyethylene. Metal is more durable, while polyethylene is cheaper and more flexible. However, these materials are not suitable for high pressure and may cause damage. Therefore, if you want to design a high-pressure pump, it is best to use metal materials.
Vacuum pumps are required in a variety of industrial environments and manufacturing processes. The most common vacuum pump is a positive displacement vacuum pump, which transports a gas load from the inlet to the outlet. The main disadvantage of this pump is that it can only generate a partial vacuum; higher vacuums must be achieved through other techniques.
Materials used in vacuum pumps vary from high to rough vacuum pumps. Low pressure ranges are typically below 1 x 10-3 mbar, but high vacuum pumps are used for extreme vacuum. They also differ in manufacturing tolerances, seals used, materials used and operating conditions.
The choice of vacuum pump material depends on the process. The vacuum range and ultimate pressure of the system must be carefully analyzed to find the right material for the job. Depending on the purpose of the pump, a variety of materials can be used, from ceramic to plastic substrates. When choosing a vacuum pump material, be sure to consider its durability and corrosion resistance.
Dry and wet vacuum pumps use oil to lubricate internal parts. This prevents wear of the pump due to corrosion. These types of pumps are also recommended for continuous use and are ideal for applications where the gas is acidic or corrosive. Therefore, they are widely used in the chemical and food industries. They are also used in rotary evaporation and volatile compound processing.
Positive displacement pumps are the most common type. They work by letting gas flow into a cavity and venting it into the atmosphere. Additionally, momentum transfer pumps, also known as molecular pumps, use high-velocity jets of high-density fluids to transport air and gases. These pumps are also used for medical purposes.

Typical application

Vacuum pumps are used to remove large amounts of air and water from the process. They are used in various industries to improve performance. For example, liquid ring vacuum pumps are used in packaging production to produce plastic sheets in the desired shape and size. Large-capacity suction pumps are used in the chemical industry to improve the surface properties of materials and speed up filtration.
There are two basic principles of vacuum pumps: entrapment and gas transfer. Positive displacement pumps are suitable for low to medium vacuums, while momentum transfer and retention pumps are suitable for high vacuums. Typically, high vacuum systems use two or more pumps working in series.
There are three main categories of vacuum pumps: primary, booster, and secondary. Their working pressure ranges from a few millimeters above atmospheric pressure. They also have several different technologies, including positive displacement, gas transfer, and gas capture. These pumps transport gas molecules through momentum exchange. Typically, they release gas molecules at roughly the same rate as they entered. When the process is complete, the gas molecules are slightly above atmospheric pressure. The discharge pressure is equal to the lowest pressure achieved, which is the compression ratio.
Vacuum pumps are widely used in all walks of life. They can be found in almost every industrial sector, including food processing. For example, they are used to make sausages and food products. In addition, they are used in landfill and digester compressors. They can also be used to build solar panels.
Oil lubricated vacuum pumps are currently the most energy-efficient vacuum pumps. These pumps are suitable for a variety of industrial applications including freeze drying and process engineering. These pumps use oil as a sealant and coolant, which makes them ideal for a variety of applications. These pumps are also very sensitive to vibration.
Another type of vacuum pump is a turbomolecular pump. These pumps have multiple stages and angled vanes. Unlike mechanical pumps, turbomolecular pumps sweep out larger areas at higher pumping speeds. In addition, they can generate ultra-high oil-free vacuums. Additionally, they have no moving parts, which makes them ideal for high vacuum pressures.
Vacuum Pump

Vacuum Pump Cost

Annual maintenance costs for vacuum pumps range from $242 to $337. The energy consumption of the vacuum pump is also a consideration, as it consumes electricity throughout its operating cycle. For example, an electric motor for a 1 hp pump uses 0.55 kW/hr, which equates to 2,200 kWh of energy per year.
Energy cost is the largest part of the total cost of a vacuum pump. They are usually four to five times higher than the initial purchase price. Therefore, choosing a more energy efficient system can reduce the total cost of ownership and extend the payback period. For many clients, this can be millions of dollars.
A vacuum pump works by compressing gas as it enters a chamber. This pushes the gas molecules towards the exhaust. The exhaust gas is then vented to the atmosphere. A special spring-loaded vane seals the pump’s chamber, creating an airtight seal. Specially formulated oils are also used to lubricate, cool and seal rotors.
Vacuum pumps are not cheap, but they have many advantages over water suction. One of the main advantages of vacuum pumps is their flexibility and reliability. This is an industry-proven solution that has been around for years. However, the initial cost of a vacuum pump is higher than that of a water aspirator.
If the vacuum pump fails unexpectedly, replacement costs can be high. Proper maintenance can extend the life of your system and prevent unplanned downtime. However, no one can predict when a pump will fail, and if a pump does fail, the cost can far exceed the cost of buying a new pump. Therefore, investing in preventive maintenance is a wise investment.
There are many types of vacuum pumps, not all of which are suitable for the same type of application. Make sure to choose a pump with the power required for the job. It should also be able to handle a variety of samples.

China Best Sales -26hg&rsquor; &rsquor; Silent Oilless Vacuum Pump for Laboratory Cleaning   vacuum pump adapter	China Best Sales -26hg&rsquor; &rsquor; Silent Oilless Vacuum Pump for Laboratory Cleaning   vacuum pump adapter
editor by Dream 2024-05-09

China factory Gwsp75 High Efficiency Dry Vacuum Pump for Laboratory vacuum pump oil

Product Description

 

Product Description

GWSP Oil free Scroll Vacuum Pump

Working principle:
GWSP oil free scroll vacuum pump is constructed with pump head assembly, crank pin assembly, bracket assembly, air flush assembly,and exhaust valve assembly.Two spiral cylinders, 1 offset and orbiting against the other fixed with an offset of 180° to form several crescent-shaped pockets of different sizes. By means of an eccentric drive, the orbiting scroll is made to orbit about the fixed scroll, reducing the volume of the pockets and compressing gas from outside towards the inside thereby pumping the gas from vacuum chamber.

Basic informations:
1) Model: GWSP75 Oil free scroll vacuum pump
2) Ultimate vacuum pressure: 8.0Pa/0.08 mbar (abs.)
3) Max suction capacity: 50Hz-1.0L/s 60Hz-1.2L/s

Safety Precautions:
The GWSP series oil free scroll vacuum pumps are suitable for clean processes only.
Do not pump toxic, explosive, flammable or corrosive substances or substances which contain chemicals, solvents or particles.GEOWELL will not perform maintenance work on pumps which have used special gases or other hazardous substances.
Be sure the inlet gas temperature must be lower than 122 °F.
 

Technical Specifications

Technical Specifications:

  Model GWSP40 GWSP75 GWSP150 GWSP300 GWSP600 GWSP1000
  Displacement 50Hz l/s 0.5 1.0  2.0  4.3 8.7 16.6
m3/h 1.8 3.6 7.2 15.5 31.3 59.8
cfm 1.1 2.1 4.3 9.3 18.7 35.8
60Hz l/s 0.6 1.2 2.4 5.1 10.4 20.0 
m3/h 2.2 4.3 8.6 18.3 37.4 71.6
cfm 1.3 2.5 5.1 10.9 22.3 42.8
  Ultimate Pressure Torr   ≤1.1*10-1   ≤6.0*10-2   ≤4.5*10-2   ≤1.9*10-2   ≤7.5*10-3   ≤7.5*10-3
psi   ≤2.2*10-3   ≤1.2*10-3   ≤9.0*10-4   ≤3.8*10-4   ≤1.5*10-4   ≤1.5*10-4
Pa   ≤15   ≤8   ≤6   ≤2.6   ≤1   ≤1
mbar   ≤1.5*10-1   ≤8.0*10-2   ≤6.0*10-2   ≤2.6*10-2   ≤1.0*10-2   ≤1.0*10-2
  Noise Level dB(A)   ≤54   ≤57   ≤57   ≤60   ≤61   ≤65
  Leakage mbar·l/s 1*10-7
  Max. Inlet/Exhaust Pressure MPa 0.1 / 0.13
  Ambient Operation Temp. ºF 41~104
  Motor 1 phase Power kW 0.25 0.55 0.55 0.55 0.75
Voltage V   110~115 (60Hz),200~230 (50Hz)
Speed rpm 1425(50Hz),1725(60Hz)
Plug   North America, Europe, UK/Ireland, India
  Motor 3 phase Power kW 0.55 0.55 0.55 0.75 1.5
Voltage V 200~230 or 380~415 (50Hz),200~230 or 460 (60Hz)
Speed rpm      1425 (50Hz),1725 (60Hz)
  Inlet/Exhaust Flange   KF25/KF16 KF40/KF16 KF40/KF16*2
  Dimensions 1 phase mm 326*212*253 450*260*296 455*260*296 493*297*334 538*315*348
3 phase mm 450*260*296 455*260*296 493*297*334 538*315*348 576*450*402
  Net Weight 1 phase kg 15 21 22 29 36
3 phase kg 20 21 28 31 54
  Cooling Type   Air cooled
  Others   With air flush

Features & Benefits

Features & Benefits:

No oil clean vacuum.
No oil back-diffusion, no oil mist exhaust, provide clean vacuum environment
Wide product lineup.
Pumping speed covers 3~60 m3 /h, limited vacuum level 1~8 Pa
Suitable for all type of power supply around the world.
110/220/380/460V, 50/60Hz for choose
Low vibration, low noise.
57~65 dB(A), smooth operation
High efficiency, ease of maintenance.
No water cooled, no oil lubricated, no daily maintenance
 

 

 

Quality Control

CMM inspection system assures
fixed tolarance on dimension&shape

Pump Testing

Applications

Analyzing instrument and device.
Spectroscopy/scHangZhou electron microscopy.
Space environment simulation machine.
Helium Leak detector.
Mass spectrometer.
Cryopump regeneration.
Accelerators/synchrotrons.

Food and drug industry.
Freezing dryer.
Vacuum storage.
Medical equipment
Low temperature plasma sterilizer.
Vacuum storage.
Dental equipment.

Vacuum equipment.
Oil free ultrahigh vacuum unit
Oil free vacuum unit

Company Profile

Company Profile
GEOWELL VACUUM CO.,LTD. is a HI-TECH enterprise in China dedicating in manufacturing, research and development, marketing of oil free scroll vacuum pumps and vacuum compressors since 2002. GEOWELL has been providing users and partners with premium quality products that are efficient and dependable, GEOWELL believe the integration of high performance and high reliability product and service will bring the highest value to both our customers and ourselves.

FAQ

Question&Answers
Q: How long can I get the feedback after we sent the inquiry?
A: We will reply you within 12 hours in working day.
Q: Are you direct manufacturer?
A: Yes, we are direct manufacturer with factory and international department; we manufacture and sell all our products by ourselves.
Q: When can you delivery the product to us?
A: Since we are a factory with large warehouse, we have abundant products in store, so we can delivery within 7 days after get your deposit.
Q: Can I add logo to the products?
A: Of course, but we usually have quantity requirement. You can contact with us for details.
Q: How to guarantee the quality and after sales service of your products?
A: We conduct strict detection during production from raw material come in to product delivering shipment. Every product must go through 4 steps inspection from casting, machining, assembling, and performance testing within our factory before shipment, also intact packaging test are insured.
Q: What is your warranty term?
A: There is a 12 months warranty for our export products from the date of shipment. If warranty has run out, our customer should pay for the replacement part.
Q: Is the sample available?
A: Yes, usually we send our samples by Fedex, DHL, TNT, UPS, EMS, SF, Depon, it will take around 3 to 4 days for our customer receive them, but customer will charge all cost related to the samples, such as sample cost and air freight. We will refund our customer the sample cost after receiving the order.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Years
Oil or Not: Oil Free
Structure: Scroll Pump
Exhauster Method: a Pair of Vortex Plates
Vacuum Degree: Low Vacuum
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Furnaces?

Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:

Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.

Here are some key points regarding the use of vacuum pumps in vacuum furnaces:

1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.

2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.

3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.

4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.

5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.

6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.

7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.

8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.

Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.

vacuum pump

How Do Vacuum Pumps Impact the Quality of 3D Printing?

Vacuum pumps play a significant role in improving the quality and performance of 3D printing processes. Here’s a detailed explanation:

3D printing, also known as additive manufacturing, is a process of creating three-dimensional objects by depositing successive layers of material. Vacuum pumps are utilized in various aspects of 3D printing to enhance the overall quality, accuracy, and reliability of printed parts. Here are some key ways in which vacuum pumps impact 3D printing:

1. Material Handling and Filtration: Vacuum pumps are used in 3D printing systems to handle and control the flow of materials. They create the necessary suction force to transport powdered materials, such as polymers or metal powders, from storage containers to the printing chamber. Vacuum systems also assist in filtering and removing unwanted particles or impurities from the material, ensuring the purity and consistency of the feedstock. This helps to prevent clogging or contamination issues during the printing process.

2. Build Plate Adhesion: Proper adhesion of the printed object to the build plate is crucial for achieving dimensional accuracy and preventing warping or detachment during the printing process. Vacuum pumps are employed to create a vacuum environment or suction force that securely holds the build plate and ensures firm adhesion between the first layer of the printed object and the build surface. This promotes stability and minimizes the risk of layer shifting or deformation during the printing process.

3. Material Drying: Many 3D printing materials, such as filament or powdered polymers, can absorb moisture from the surrounding environment. Moisture-contaminated materials can lead to poor print quality, reduced mechanical properties, or defects in the printed parts. Vacuum pumps with integrated drying capabilities can be employed to create a low-pressure environment, effectively removing moisture from the materials before they are used in the printing process. This ensures the dryness and quality of the materials, resulting in improved print outcomes.

4. Resin Handling in Stereolithography (SLA): In SLA 3D printing, a liquid resin is selectively cured using light sources to create the desired object. Vacuum pumps are utilized to facilitate the resin handling process. They can be employed to degas or remove air bubbles from the liquid resin, ensuring a smooth and bubble-free flow during material dispensing. This helps to prevent defects and imperfections caused by trapped air or bubbles in the final printed part.

5. Enclosure Pressure Control: Some 3D printing processes, such as selective laser sintering (SLS) or binder jetting, require the printing chamber to be maintained at a specific pressure or controlled atmosphere. Vacuum pumps are used to create a controlled low-pressure or vacuum environment within the printing chamber, enabling precise pressure regulation and maintaining the desired conditions for optimal printing results. This control over the printing environment helps to prevent oxidation, improve material flow, and enhance the quality and consistency of printed parts.

6. Post-Processing and Cleaning: Vacuum pumps can also aid in post-processing steps and cleaning of 3D printed parts. For instance, in processes like support material removal or surface finishing, vacuum systems can assist in the removal of residual support structures or excess powder from printed objects. They can also be employed in vacuum-based cleaning methods, such as vapor smoothing, to achieve smoother surface finishes and enhance the aesthetics of the printed parts.

7. System Maintenance and Filtration: Vacuum pumps used in 3D printing systems require regular maintenance and proper filtration to ensure their efficient and reliable operation. Effective filtration systems within the vacuum pumps help to remove any contaminants or particles generated during printing, preventing their circulation and potential deposition on the printed parts. This helps to maintain the cleanliness of the printing environment and minimize the risk of defects or impurities in the final printed objects.

In summary, vacuum pumps have a significant impact on the quality of 3D printing. They contribute to material handling and filtration, build plate adhesion, material drying, resin handling in SLA, enclosure pressure control, post-processing and cleaning, as well as system maintenance and filtration. By utilizing vacuum pumps in these critical areas, 3D printing processes can achieve improved accuracy, dimensional stability, material quality, and overall print quality.

vacuum pump

Can Vacuum Pumps Be Used in Food Processing?

Yes, vacuum pumps are widely used in food processing for various applications. Here’s a detailed explanation:

Vacuum pumps play a crucial role in the food processing industry by enabling the creation and maintenance of vacuum or low-pressure environments. They offer several benefits in terms of food preservation, packaging, and processing. Here are some common applications of vacuum pumps in food processing:

1. Vacuum Packaging: Vacuum pumps are extensively used in vacuum packaging processes. Vacuum packaging involves removing air from the packaging container to create a vacuum-sealed environment. This process helps extend the shelf life of food products by inhibiting the growth of spoilage-causing microorganisms and reducing oxidation. Vacuum pumps are used to evacuate the air from the packaging, ensuring a tight seal and maintaining the quality and freshness of the food.

2. Freeze Drying: Vacuum pumps are essential in freeze drying or lyophilization processes used in food processing. Freeze drying involves removing moisture from food products while they are frozen, preserving their texture, flavor, and nutritional content. Vacuum pumps create a low-pressure environment that allows frozen water to directly sublimate from solid to vapor, resulting in the removal of moisture from the food without causing damage or loss of quality.

3. Vacuum Cooling: Vacuum pumps are utilized in vacuum cooling processes for rapid and efficient cooling of food products. Vacuum cooling involves placing the food in a vacuum chamber and reducing the pressure. This lowers the boiling point of water, facilitating the rapid evaporation of moisture and heat from the food, thereby cooling it quickly. Vacuum cooling helps maintain the freshness, texture, and quality of delicate food items such as fruits, vegetables, and bakery products.

4. Vacuum Concentration: Vacuum pumps are employed in vacuum concentration processes in the food industry. Vacuum concentration involves removing excess moisture from liquid food products to increase their solids content. By creating a vacuum, the boiling point of the liquid is reduced, allowing for gentle evaporation of water while preserving the desired flavors, nutrients, and viscosity of the product. Vacuum concentration is commonly used in the production of juices, sauces, and concentrates.

5. Vacuum Mixing and Deaeration: Vacuum pumps are used in mixing and deaeration processes in food processing. In the production of certain food products such as chocolates, confectioneries, and sauces, vacuum mixing is employed to remove air bubbles, achieve homogeneity, and improve product texture. Vacuum pumps aid in the removal of entrapped air and gases, resulting in smooth and uniform food products.

6. Vacuum Filtration: Vacuum pumps are utilized in food processing for vacuum filtration applications. Vacuum filtration involves separating solids from liquids or gases using a filter medium. Vacuum pumps create suction that draws the liquid or gas through the filter, leaving behind the solid particles. Vacuum filtration is commonly used in processes such as clarifying liquids, removing impurities, and separating solids from liquids in the production of beverages, oils, and dairy products.

7. Marinating and Brining: Vacuum pumps are employed in marinating and brining processes in the food industry. By applying a vacuum to the marinating or brining container, the pressure is reduced, allowing the marinade or brine to penetrate the food more efficiently. Vacuum marinating and brining help enhance flavor absorption, reduce marinating time, and improve the overall taste and texture of the food.

8. Controlled Atmosphere Packaging: Vacuum pumps are used in controlled atmosphere packaging (CAP) systems in the food industry. CAP involves modifying the gas composition within food packaging to extend the shelf life and maintain the quality of perishable products. Vacuum pumps aid in the removal of oxygen or other unwanted gases from the package, allowing the introduction of a desired gas mixture that preserves the food’s freshness and inhibits microbial growth.

These are just a few examples of how vacuum pumps are used in food processing. The ability to create and control vacuum or low-pressure environments is a valuable asset in preserving food quality, enhancing shelf life, and facilitating various processing techniques in the food industry.

China factory Gwsp75 High Efficiency Dry Vacuum Pump for Laboratory   vacuum pump oil	China factory Gwsp75 High Efficiency Dry Vacuum Pump for Laboratory   vacuum pump oil
editor by Dream 2024-05-08

China factory Low Noise Corrosion-Resistant Pump Laboratory Diaphragm Vacuum Pump vacuum pump for ac

Product Description

Product Parameters

Model HB-20
Voltage / Frequency 220V50HZ
Power 120W
Pump Head Type Two-stage pump
Ultimate Vacuum 6-8mbar
Operating Pressure ≤1bar
Flow ≤20L/Min
Connection Specification 10mm
Medium and Ambient Temperature 5ºC~40ºC
Vacuum Gauge No vacuum regulator
Dimensions (LXWXH) 315x165x210mm
Weight 9.5KG
Relative Humidity ≤80%
Pump Head Material PTFE
Composite Diaphragm Material HNBR+PTFE(Customized)
Valve Material FKM ,FFPM(Customized)
Solid Discharge Valve With
Work System Continuously working
Noise ≤55db
Rated Speed 1450RPM

Product Description

Oil-free Vacuum Diaphragm Pump is a two-stage pump with gas as the medium. All parts in contact with the gas are made of polytetrafluoroethylene (PTFE). It has high corrosion resistance and a wide range of applications. It can completely replace water circulation pumps and is suitable for chemical Treatment of corrosive gases in the pharmaceutical, petrochemical and other industries, such as oil filtration, vacuum distillation, rotary evaporation, vacuum concentration, centrifugal concentration, CHINAMFG extraction, etc.

Company Profile

Packaging & Shipping

FAQ

Q1. What is your products range?
• Industry water chiller, recirculating cooling chiller, rotary evaporator, alcohol recovery equipment, short path distillation kit, glass molecular distillation equipment, falling film evaporator, jacketed glass reactor and other lab equipment.

Q2. Are you trading company or manufacturer?
• We are professional manufacture of lab equipment and we have our own factory.

Q3. Do you provide samples? Is it free?

• Yes, we could offer the sample. Considering the high value of our products, the sample is not free, but we will give you our best price including shipping cost.

Q4. Do you have warranty?
• Yes, we offer 1 year warranty for the spare part.

Q5. How long is your delivery time?
• Generally it is within 7 working days after receiving the payment if the goods are in stock. Or it is 15 working days if thegoods are not in stock, depending on order quantity.

Q6. What is your terms of payment?
• Payment≤15,000USD, 100% in advance. Payment≥15,000USD, 70% T/T in advance, balance before shipment.
(If you are concerned about payment security for the first order, we advise you can place Trade Assurance Order via Alibaba. you will get 100% payment refund if we can’t meet agreed delivery time.)

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service Support
Warranty: 1 Year
Oil or Not: Oil Free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

diaphragm vane pump

Are diaphragm vacuum pumps environmentally friendly and compliant with regulations?

Diaphragm vacuum pumps are generally considered to be environmentally friendly and compliant with regulations. Here’s a detailed explanation:

Environmental Friendliness: Diaphragm vacuum pumps offer several features that contribute to their environmental friendliness:

No Oil Lubrication: Diaphragm pumps operate without the need for oil lubrication, which eliminates the risk of oil contamination in the vacuum system. This is particularly important in applications where oil vapor contamination could affect product quality or pose environmental hazards. The absence of oil lubrication also reduces the need for oil changes and disposal, resulting in lower environmental impact.

Low Noise Emission: Diaphragm pumps are known for their relatively quiet operation compared to other types of vacuum pumps. The reduced noise emission makes them more environmentally friendly, particularly in settings where noise pollution needs to be minimized.

Energy Efficiency: Diaphragm vacuum pumps can be designed to be energy-efficient, consuming less electrical power compared to other vacuum pump types. Reduced energy consumption not only contributes to cost savings but also helps reduce the overall environmental impact associated with energy usage.

Chemical Compatibility: Diaphragm pumps are available in models constructed with chemically resistant materials. This allows them to handle corrosive gases or chemical vapors without degradation or release of harmful substances, further ensuring environmental compatibility.

Regulatory Compliance: Diaphragm vacuum pumps are designed and manufactured to meet regulatory standards and requirements. They are commonly used in various industries and applications where compliance with environmental and safety regulations is crucial. Some specific regulations that diaphragm vacuum pumps may comply with include:

Restriction of Hazardous Substances (RoHS): Diaphragm pumps are often manufactured to comply with RoHS directives, which restrict the use of hazardous substances such as lead, mercury, cadmium, and certain flame retardants in electrical and electronic equipment.

CE Marking: Diaphragm pumps intended for sale within the European Economic Area (EEA) are required to bear the CE marking, indicating compliance with relevant European Union (EU) directives related to health, safety, and environmental protection.

International Electrotechnical Commission (IEC) Standards: Diaphragm vacuum pumps may adhere to specific IEC standards that ensure their safety, performance, and environmental compatibility.

It’s important to note that while diaphragm vacuum pumps are generally considered environmentally friendly and compliant with regulations, it’s essential to select pumps from reputable manufacturers and suppliers. This ensures that the pumps meet the necessary standards and certifications applicable to a specific industry or application.

In summary, diaphragm vacuum pumps are environmentally friendly due to their oil-free operation, low noise emission, energy efficiency, and chemical compatibility. They are designed and manufactured to comply with regulatory standards and requirements, such as RoHS directives, CE marking, and IEC standards. When choosing diaphragm vacuum pumps, it’s advisable to verify that they come from reliable sources and meet the necessary certifications for your specific application to ensure environmental compatibility and regulatory compliance.

diaphragm vane pump

How do diaphragm vacuum pumps handle condensable vapors and liquids?

Diaphragm vacuum pumps have certain mechanisms in place to handle condensable vapors and liquids encountered during operation. Here’s a detailed explanation:

When diaphragm vacuum pumps encounter condensable vapors or liquids, the following methods are typically employed to handle them:

Condensate Traps: Diaphragm vacuum pumps often incorporate condensate traps in their design. These traps are positioned in the vacuum line and are specifically designed to capture and collect condensable vapors and liquids. The traps typically consist of a cooled surface or a series of baffles that cause the condensable substances to condense and collect in a separate reservoir, preventing them from entering the pump.

Chemical Resistance: Diaphragm pumps are often constructed using materials that are resistant to the corrosive effects of condensable vapors and liquids. Materials such as PTFE (polytetrafluoroethylene) or other chemically resistant polymers are commonly used in the construction of diaphragm pumps to ensure compatibility with various liquids and vapors encountered in different applications.

Separation and Filtration: In some cases, diaphragm vacuum pumps may incorporate separation and filtration mechanisms to handle condensable substances. These mechanisms can include filters or coalescing elements that help to separate the liquid or vapor from the gas stream, allowing the gas to be pumped while preventing the liquid or vapor from entering the pump.

It’s important to note that while diaphragm vacuum pumps can handle condensable vapors and liquids to a certain extent, there are limitations. If the amount of condensable substances is excessive or if the pump is not specifically designed to handle certain types of condensates, it may lead to pump performance issues or damage. In such cases, it may be necessary to implement additional vapor traps, cold traps, or other specialized equipment to effectively manage the condensable substances.

In summary, diaphragm vacuum pumps handle condensable vapors and liquids through the use of condensate traps, chemical-resistant materials, and separation/filtration mechanisms. These features help prevent the condensable substances from entering the pump and ensure reliable and efficient operation.

diaphragm vane pump

What are the typical applications of diaphragm vacuum pumps in laboratories and industries?

Diaphragm vacuum pumps find widespread use in laboratories and various industries due to their versatile capabilities. Here’s a detailed explanation of the typical applications of diaphragm vacuum pumps in laboratories and industries:

In Laboratories:

Laboratory Research and Analysis: Diaphragm vacuum pumps are extensively used in laboratories for various research and analytical applications. They provide vacuum conditions necessary for techniques such as filtration, degassing, rotary evaporation, centrifugation, and vacuum ovens. Diaphragm pumps are also used in analytical instruments like gas chromatographs, mass spectrometers, and vacuum-based sample preparation systems.

Medical and Healthcare: Diaphragm pumps are employed in medical and healthcare settings for applications such as vacuum filtration in microbiology, vacuum aspiration in clinical laboratories, vacuum sealing of sterilized containers, and vacuum drying in medical device manufacturing. They are also used in dental clinics for suction and aspiration procedures.

Environmental Monitoring and Analysis: Diaphragm vacuum pumps play a crucial role in environmental monitoring and analysis. They are used for air sampling, gas collection, and monitoring of pollutants in ambient air or emission sources. Diaphragm pumps are utilized in environmental testing laboratories for sample preparation and analysis, such as water and soil testing.

In Industries:

Vacuum Filtration: Diaphragm vacuum pumps are commonly used in industries for filtration processes. They create a vacuum to draw liquids through a filter medium, separating solids from the liquid. This technique is widely employed in industries such as pharmaceuticals, biotechnology, food and beverage, and chemical processing.

Vacuum Drying and Degassing: Diaphragm pumps facilitate vacuum drying and degassing processes in industries. They help remove moisture or volatile substances from materials or products under vacuum conditions. This is crucial in industries like electronics manufacturing, automotive, aerospace, and materials science.

Automotive and Manufacturing Processes: Diaphragm vacuum pumps find applications in automotive and manufacturing processes. They are used for vacuum-assisted molding, vacuum lifting and handling of objects, vacuum packaging, and vacuum-based testing or leak detection in components and systems.

Semiconductor and Electronics Manufacturing: Diaphragm pumps are extensively utilized in the semiconductor and electronics industry. They provide vacuum conditions for processes such as wafer handling, thin film deposition, etching, and packaging. Diaphragm pumps are preferred due to their oil-free operation, which prevents contamination of sensitive electronic components.

These are some of the typical applications of diaphragm vacuum pumps in laboratories and industries. The versatility, oil-free operation, chemical resistance, and compact design of diaphragm pumps make them suitable for a wide range of applications, contributing to their popularity across various sectors.

China factory Low Noise Corrosion-Resistant Pump Laboratory Diaphragm Vacuum Pump   vacuum pump for ac	China factory Low Noise Corrosion-Resistant Pump Laboratory Diaphragm Vacuum Pump   vacuum pump for ac
editor by Dream 2024-05-03

China Custom Micro Diaphragm Pump Corrosion Resistant Vacuum Pump for Laboratory vacuum pump

Product Description

Laboratory Mini Diaphragm Vacuum Pump Electric Diaphragm Pumps 

Features of rotary vane vacuum pump:

1, corrosion resistance: Anti-corrosion resistant vacuum pump uses a special diaphragm (diaphragm surface composite PTFE coating) and pump head design, including all joints and pipelines, to ensure that the part in contact with the gas part are imported PTFE material, so it can resist most of the corrosive gas; At the same time the electrical switch and the shell also do corrosion prevention treatment, especially on the transmission mechanism and circuit part of the use of corrosion resistant materials to form a closed space, completely isolated from the outside environment, so that the vacuum pump can not only withstand corrosive medium, but also can be perfectly suitable for corrosive environment, completely solve the problem of chemical corrosion resistance of the vacuum pump.
2, no pollution, no maintenance: diaphragm vacuum pump can achieve complete solvent recovery, eliminate toxic and harmful organic solvent pollution to the environment and the health of the operator and nearby personnel, even if the mixed solvent can also be highly recycled; Diaphragm pump is a dry pump without water and oil, so that the laboratory becomes clean and quiet, the user does not need regular cleaning, pipe change, water change and other maintenance work, diaphragm vacuum pump to achieve 100% maintenance free;
3, low noise, low vibration: corrosion resistant vacuum pump adopts motor direct drive power transmission, no intermediate transmission parts, coupled with the diaphragm low stroke, low noise characteristics, so the product noise can be kept below 70dB;
4, overheating protection: each product is equipped with a temperature protection switch, when the internal temperature of the body is too high, it will automatically stop, Such as temperature cooling after starting , to ensure the stability and safety of the syste.

Product Parameters

Mode VB20 VB40 VB60
Reted voltage/frequency 220V/50Hz 220V/50Hz 220V/50Hz
Rated power 120W 240W 375W
Pump head type Double-stage pump
Limiting vacuum degree 8mbar
Operating vacuum degree 15-20mbar
Maximum Operating pressure 1bar
Maximum flow 20L/min 40L/min 60L/min
The interface specification 10MM 12MM
Medium and ambient temperature 5ºC~40ºC
Ambient relative humidity <80%
Pump head material PTFE
Composite Diaphragm material HNBR+PTFE(Can be custemised accorading to custome requirments)
Valve material FKM EFPM(Can be custemised accorading to custome requirments)
Vacuum gauge With vacuum regulating valve without
Working time Continuous work
Noice <70dB
Rated ratorating speed 1450RPM 1450RPM 1450RPM
Overall dimension 315*165*210 320*170*210 360*295*225mm
Weight 96kg 11kg 18kg

Packaging & Shipping

Package Detail

1) Wooden packing
2) The goods can be shipped by sea, air or train, small goods or spare parts will be shipped by express.
3) You can choose your own freight forwardwe as well.
4) Door to Door Delivery to save your energy and time. We’ll take the all risks during transportation.
Shipping Details

1) AMERICA:3-8 working days.
2) ASIAN:3-8 working days.
3) EUROPE:5-10 working days.
4) OCEANIA:4-9 working days.
5) AFRICA:7-13woring day.

Application Field

Company Profile

i’an Xihu (West Lake) Dis. Biotechnology Co., Ltd, is a famous manufacturer of Lab equipment located in the central China. Now has XIHU (WEST LAKE) DIS., CHINAMFG 2 CHINAMFG brand trademarks. The main products include ultra-high temperature and high pressure reactor, high pressure photochemical reactor, supercritical high pressure reactor, high pressure glass reactor, micro high pressure reactor, high pressure ultrasonic reactor, Ultra-high temperature hydrothermal synthesis reactor, photocatalytic reactor, visual catalytic reactor, hydrothermal synthesis reactor, rotary evaporator, parallel synthesis reactor, high and low temperature circulator, high and low temperature high pressure tubular reactor and other equipment and so on.

Specialize in this field for more than 20 years,TKA brand instrument has own high reputation in more than 70 countries and regions, provide technical support for tens of thousands organizations to solve problems within their research, special for university, research institutes, industries, inspection agencies, etc. Promoting technology progress and improving human life is CHINAMFG social mission.

Exhibition Show

FAQ

Q1:Are you trading company or manufacturer?
A1:We are professional manufacture of lab equipment and we have our own factory which is a high-tech enterprise integrating R&D, production and sales. And welcome to visit our factory.

Q2: How long is your delivery time?
A2: Usually, delivery time is 30-45 days after receiving your payment.

Q3:How to shipping the replacement parts?
A3:We will according the actual situation to choose the suitable shipping ways. For small parts we shippin by Express.

Q4: How about your quality warranty ?
A4: Normally all CHINAMFG products are supplied with a warranty of 12 Months from the date of shipment.

Q5: Do you accept OEM and ODM orders?
A5: Yes,We accept.

Q6:What is your terms of payment?
A6:Payment≤15,000USD, 100% in advance. Payment≥15,000USD, 70% T/T in advance, balance before shipment.
(If you are concerned about payment security for the first order, we advise you can place Trade Assurance Order via Made in China. you will get 100% payment refund if we can’t meet agreed delivery time.)

Q7:Can we visit your factory?
A7: Welcome visit our factory.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support
Warranty: 1year
Oil or Not: Oil Free
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Customization:
Available

|

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum ovens and freeze-drying processes?

Yes, diaphragm vacuum pumps can be used in both vacuum ovens and freeze-drying processes. Here’s a detailed explanation:

Vacuum Ovens: Vacuum ovens are commonly used in various industries and scientific applications for drying, curing, or processing materials under low-pressure conditions. Diaphragm vacuum pumps are well-suited for vacuum oven applications due to their ability to generate and maintain the required vacuum levels. The diaphragm pump’s design, which does not require oil lubrication, makes it ideal for applications where contamination from oil vapors is a concern. The pumps can efficiently remove air and other gases from the oven chamber, creating a controlled low-pressure environment for the drying or curing process.

When selecting a diaphragm vacuum pump for a vacuum oven, several factors should be considered:

Vacuum Level: The diaphragm pump should be capable of achieving the desired vacuum level required for the specific application. Different diaphragm pump models may have different maximum achievable vacuum levels, so it’s important to choose a pump that meets the oven’s vacuum requirements.

Flow Rate: The flow rate of the diaphragm pump should be sufficient to maintain the desired vacuum level within the oven chamber. The pump’s flow rate should be able to handle any gas released during the drying or curing process and compensate for any minor leaks in the system.

Chemical Compatibility: It’s essential to consider the chemical compatibility of the diaphragm pump’s materials with the substances being processed in the vacuum oven. Some diaphragm pumps are designed with chemically resistant materials, allowing them to handle corrosive or reactive gases without degradation or contamination.

Freeze-Drying Processes: Freeze-drying, also known as lyophilization, is a process used to remove moisture from products while preserving their structure and integrity. Diaphragm vacuum pumps can be employed in freeze-drying systems to create the necessary low-pressure environment for sublimation, where ice is directly converted from solid to vapor without passing through a liquid phase.

In freeze-drying processes, diaphragm vacuum pumps play a crucial role in two main stages:

Freezing Stage: The diaphragm pump can be used to evacuate the moisture or solvent vapors released during the freezing step of the freeze-drying process. By removing these vapors, the pump helps maintain a controlled environment during freezing and prevents ice buildup on the product.

Drying Stage: Once the product is frozen, the diaphragm vacuum pump is utilized to create a vacuum within the freeze-drying chamber. This vacuum environment allows the frozen moisture to sublime, transforming it directly from ice to vapor. The diaphragm pump continuously removes the vapor, aiding in the drying process and facilitating efficient moisture removal from the product.

Similar to vacuum oven applications, when choosing a diaphragm vacuum pump for freeze-drying processes, factors such as vacuum level capability, flow rate, and chemical compatibility should be considered. Additionally, the pump should be able to handle the potential condensable vapors generated during the sublimation process.

In summary, diaphragm vacuum pumps are suitable for use in vacuum ovens and freeze-drying processes. They can effectively create and maintain the required low-pressure environments for drying, curing, and sublimation. When selecting a diaphragm pump for these applications, factors such as vacuum level, flow rate, chemical compatibility, and the presence of condensable vapors should be taken into account to ensure optimal performance and successful operation.

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum filtration setups?

Yes, diaphragm vacuum pumps are commonly used in vacuum filtration setups. Here’s a detailed explanation:

Vacuum filtration is a widely used technique in various fields, including laboratory research, pharmaceutical manufacturing, and industrial processes. It involves applying a vacuum to a filter apparatus to facilitate the separation of solids from liquids or gases.

Diaphragm vacuum pumps are well-suited for vacuum filtration setups due to the following reasons:

Oil-Free Operation: Diaphragm pumps operate without the need for oil lubrication. This oil-free operation is particularly advantageous in vacuum filtration, as it eliminates the risk of oil contamination that could interfere with the filtration process or contaminate the filtrate.

Chemical Compatibility: Diaphragm pumps are available in various chemically resistant materials such as PTFE (polytetrafluoroethylene) or other corrosion-resistant polymers. This allows them to handle a wide range of filtration applications involving different chemicals or solvents without the risk of material degradation.

Adjustable Vacuum Levels: Diaphragm vacuum pumps offer adjustable vacuum levels, allowing users to control and optimize the filtration process. The vacuum level can be adjusted based on the specific filtration requirements, such as the nature of the filter medium, the volume of the sample, or the desired filtration rate.

Compact and Portable: Diaphragm vacuum pumps are often compact and lightweight, making them suitable for benchtop or portable filtration setups. Their small footprint and ease of operation make them convenient for use in various laboratory or field applications.

When using diaphragm vacuum pumps in vacuum filtration setups, it’s important to consider the following factors:

Flow Rate: Diaphragm pumps are available in different flow rate capacities. It’s essential to select a pump with an appropriate flow rate to ensure efficient filtration without excessive filtration time or clogging of the filter media.

Compatibility with Filtration Apparatus: Diaphragm pumps should be compatible with the specific filtration apparatus being used, including the filter flask, filter holder, and associated tubing or connectors. Ensuring proper compatibility and airtight connections is crucial for achieving effective vacuum filtration.

In summary, diaphragm vacuum pumps are well-suited for vacuum filtration setups due to their oil-free operation, chemical compatibility, adjustable vacuum levels, and compact design. They offer reliable and efficient performance in a wide range of filtration applications, making them a popular choice in laboratories, pharmaceutical manufacturing, and industrial processes.

diaphragm vane pump

Can diaphragm vacuum pumps handle both corrosive and non-corrosive gases?

Diaphragm vacuum pumps have the capability to handle both corrosive and non-corrosive gases, depending on their design and construction. Here’s a detailed explanation:

Diaphragm pumps are often designed with materials that offer excellent chemical resistance. The wetted parts of the pump, including the diaphragm, valves, and other components that come into contact with the pumped gas, are typically made of chemically resistant materials such as rubber or elastomer. This allows diaphragm vacuum pumps to handle corrosive gases without degradation or contamination.

When used with corrosive gases, it’s essential to ensure that the diaphragm pump is specifically designed and constructed for compatibility with those gases. Different types of diaphragm materials may be available to accommodate various corrosive gases, such as fluorocarbon-based diaphragms for highly aggressive chemicals.

Furthermore, diaphragm pumps can also handle non-corrosive gases effectively. The same chemical resistance that allows them to handle corrosive gases also makes them suitable for non-corrosive gases. Whether it’s vacuum filtration, vacuum drying, degassing, or other applications involving non-corrosive gases, diaphragm pumps can provide reliable and efficient vacuum generation.

It’s important to note that while diaphragm vacuum pumps can handle a wide range of gases, there may be limitations in terms of compatibility with extremely aggressive chemicals or gases at high temperatures or pressures. In such cases, it’s crucial to consult the pump manufacturer’s specifications and guidelines to ensure that the pump is suitable for the specific gas or application.

Overall, diaphragm vacuum pumps offer the advantage of handling both corrosive and non-corrosive gases, making them versatile for various laboratory and industrial applications that involve different types of gases.

China Custom Micro Diaphragm Pump Corrosion Resistant Vacuum Pump for Laboratory   vacuum pump	China Custom Micro Diaphragm Pump Corrosion Resistant Vacuum Pump for Laboratory   vacuum pump
editor by Dream 2024-05-02

China best -26hg&rsquor; &rsquor; Silent Oilless Vacuum Pump for Laboratory Cleaning vacuum pump electric

Product Description

Product Parameters

Complete solution leader in oilless air pump field
 

* Oilless operation
* Permanently lubricated bearings
* High performance piston seal
* Die-cast aluminum components
* Thin wall, hard coated aluminum cylinder
* Dynamically balanced
* Twin headed rock piston
* RoHS compliant
* Safety ETL certificated

NOTE: All test values are nominal and for reference only. They are not guaranteed maximum or minimum limits, nor do they imply mean or median.
Model Number SMV-50
Performance Data  
Head configuration Pressure parallel flow
Nominal voltage/frequency 220V/50HZ
Max. Current 0.75A
Max. Power 160W
Max. Flow 50L/MIN
Max. Vacuum -88Kpa
Speed at rated load 1400RPM
Noise <52dB
Max.Pressure restart 0 PSI
Electrical Data  
Motor type[Capacitance] P.S.C(4.5uF)
Motor insulation class B
Thermal switch[Open temperature] Thermally protected(145°C)
Line lead wire color,gauge Brown(hot),blue(neutral),18AWG
Capacitor lead wire color,gauge Black,black,18 AWG
General Data  
Operating ambient air temperature 50° to 104°F(10° to 40°C)
Safety certification ETL
Dimension(LXWXH) 168X99X150 MM
Installation size 105X70 MM
Net weight 3.5KG
Application Medical suctions, lab,vacuum packaing etc.

Detailed Photos

Our Advantages

 

*Bearing

1.Standard product with ERB bearing, 14000 hours operation. 2.Customized imported TPI/NSK bearing

*Motor

1.The coil adopts the fine pure copper enameled wire. 2.The rotor adopts the famous brand silicon steel sheet such as ZheJiang baosteel.

 *Valve

1.The valve steel of Sweden SANDVIK; Good flexibility and long durability. 2.Thickness from 0.08mm to 1.2mm, suitable for maximum pressure from 0.8 MPa to 1.2 MPa.

*Piston ring

1.Wear-resistant high temperature; Ensure more than 10,000 hours of service life. 2.Customized imported piston ring.

 

Product Application

 

 

Our manufacturing process

 

We design and produce all main parts by ourselves, along with the standard procedure and test equipment, so we can better control the quality and cost.Our factory starts from die-casting of aluminium, motor production, precision finishing, automatic assembly of pumps, the capacity is 300,000 units per month,we provide OEM/ODM service so that can better achieve high-end customization and development for customers.

Our company possess strong technical research and development force, owns self-design and new product development capabilities, we concentrate on building a “flagship type” enterprise with the whole series of product  lines of domestic and international medical use oilless air pumps.Technological innovation is the source of enterprise’s high quality development. We have a complete set of testing laboratories such as motor lab,high and low temperature lab,ROHS lab and Life test etc.

Our factory owns 8 motor production lines,16 aluminum die-casting machines, more than 150 high precision CNC lathes and more than 20 CNC machines. From the essential motor design to the entire design of the pump, it has been professionally tested, verified and validated, Our factory has full vertical integration for whole supply chain,So the quality can be firmly controlled by ourselves. 
 

Our Service

 

Certifications

 

We specialize in the designing and manufacturing various kinds of oil free air compressor, vacuum pump since 2571,especially for medical applicaton,we are the vendor of Omron, Panasonic,Invacare, Nidek Medical etc.

Strive for survival by quality, seek benefits from management. Our company regards product quality as the life and continuous pursuit of the enterprise. Our company complies with the requirements of, implements the standardized management of R&D,production,quality assurance and production services, and sets up the strict operation specifications and procedures for each process. Our products have passed the ETL,CE,CCC and other certifications, CHINAMFG the leading level in the world.Our company has more than 20 invention patents and utility patents. Our company has acquired the certifications of “National High-Tech Enterprises”,”ZheJiang Private Science and Technology Enterprises”,”ZheJiang Engineering Technology Center” and so on.

We are dedicated to working with the global intelligent product brand owners, retailers and distributors to establish a CHINAMFG long-term OEM / ODM business partnerships. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: on Line Support and Free Spare Parts
Air Flow: 50 L/Min
Vacuum: -88kpa
Samples:
US$ 75/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

What Is the Impact of Altitude on Vacuum Pump Performance?

The performance of vacuum pumps can be influenced by the altitude at which they are operated. Here’s a detailed explanation:

Altitude refers to the elevation or height above sea level. As the altitude increases, the atmospheric pressure decreases. This decrease in atmospheric pressure can have several effects on the performance of vacuum pumps:

1. Reduced Suction Capacity: Vacuum pumps rely on the pressure differential between the suction side and the discharge side to create a vacuum. At higher altitudes, where the atmospheric pressure is lower, the pressure differential available for the pump to work against is reduced. This can result in a decrease in the suction capacity of the vacuum pump, meaning it may not be able to achieve the same level of vacuum as it would at lower altitudes.

2. Lower Ultimate Vacuum Level: The ultimate vacuum level, which represents the lowest pressure that a vacuum pump can achieve, is also affected by altitude. As the atmospheric pressure decreases with increasing altitude, the ultimate vacuum level that can be attained by a vacuum pump is limited. The pump may struggle to reach the same level of vacuum as it would at sea level or lower altitudes.

3. Pumping Speed: Pumping speed is a measure of how quickly a vacuum pump can remove gases from a system. At higher altitudes, the reduced atmospheric pressure can lead to a decrease in pumping speed. This means that the vacuum pump may take longer to evacuate a chamber or system to the desired vacuum level.

4. Increased Power Consumption: To compensate for the decreased pressure differential and achieve the desired vacuum level, a vacuum pump operating at higher altitudes may require higher power consumption. The pump needs to work harder to overcome the lower atmospheric pressure and maintain the necessary suction capacity. This increased power consumption can impact energy efficiency and operating costs.

5. Efficiency and Performance Variations: Different types of vacuum pumps may exhibit varying degrees of sensitivity to altitude. Oil-sealed rotary vane pumps, for example, may experience more significant performance variations compared to dry pumps or other pump technologies. The design and operating principles of the vacuum pump can influence its ability to maintain performance at higher altitudes.

It’s important to note that vacuum pump manufacturers typically provide specifications and performance curves for their pumps based on standardized conditions, often at or near sea level. When operating a vacuum pump at higher altitudes, it is advisable to consult the manufacturer’s guidelines and consider any altitude-related limitations or adjustments that may be necessary.

In summary, the altitude at which a vacuum pump operates can have an impact on its performance. The reduced atmospheric pressure at higher altitudes can result in decreased suction capacity, lower ultimate vacuum levels, reduced pumping speed, and potentially increased power consumption. Understanding these effects is crucial for selecting and operating vacuum pumps effectively in different altitude environments.

vacuum pump

How Do Vacuum Pumps Assist in Freeze-Drying Processes?

Freeze-drying, also known as lyophilization, is a dehydration technique used in various industries, including pharmaceutical manufacturing. Vacuum pumps play a crucial role in facilitating freeze-drying processes. Here’s a detailed explanation:

During freeze-drying, vacuum pumps assist in the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. The freeze-drying process involves three main stages: freezing, primary drying (sublimation), and secondary drying (desorption).

1. Freezing: In the first stage, the pharmaceutical product is frozen to a solid state. Freezing is typically achieved by lowering the temperature of the product below its freezing point. The frozen product is then placed in a vacuum chamber.

2. Primary Drying (Sublimation): Once the product is frozen, the vacuum pump creates a low-pressure environment within the chamber. By reducing the pressure, the boiling point of water or solvents present in the frozen product is lowered, allowing them to transition directly from the solid phase to the vapor phase through a process called sublimation. Sublimation bypasses the liquid phase, preventing potential damage to the product’s structure.

The vacuum pump maintains a low-pressure environment by continuously removing the water vapor or solvent vapor generated during sublimation. The vapor is drawn out of the chamber, leaving behind the freeze-dried product. This process preserves the product’s original form, texture, and biological activity.

3. Secondary Drying (Desorption): After the majority of the water or solvents have been removed through sublimation, the freeze-dried product may still contain residual moisture or solvents. In the secondary drying stage, the vacuum pump continues to apply vacuum to the chamber, but at a higher temperature. The purpose of this stage is to remove the remaining moisture or solvents through evaporation.

The vacuum pump maintains the low-pressure environment, allowing the residual moisture or solvents to evaporate at a lower temperature than under atmospheric pressure. This prevents potential thermal degradation of the product. Secondary drying further enhances the stability and shelf life of the freeze-dried pharmaceutical product.

By creating and maintaining a low-pressure environment, vacuum pumps enable efficient and controlled sublimation and desorption during the freeze-drying process. They facilitate the removal of water or solvents while minimizing the potential damage to the product’s structure and preserving its quality. Vacuum pumps also contribute to the overall speed and efficiency of the freeze-drying process by continuously removing the vapor generated during sublimation and evaporation. The precise control provided by vacuum pumps ensures the production of stable and high-quality freeze-dried pharmaceutical products.

vacuum pump

How Are Vacuum Pumps Different from Air Compressors?

Vacuum pumps and air compressors are both mechanical devices used to manipulate air and gas, but they serve opposite purposes. Here’s a detailed explanation of their differences:

1. Function:

– Vacuum Pumps: Vacuum pumps are designed to remove or reduce the pressure within a closed system, creating a vacuum or low-pressure environment. They extract air or gas from a chamber, creating suction or negative pressure.

– Air Compressors: Air compressors, on the other hand, are used to increase the pressure of air or gas. They take in ambient air or gas and compress it, resulting in higher pressure and a compacted volume of air or gas.

2. Pressure Range:

– Vacuum Pumps: Vacuum pumps are capable of generating pressures below atmospheric pressure or absolute zero pressure. The pressure range typically extends into the negative range, expressed in units such as torr or pascal.

– Air Compressors: Air compressors, on the contrary, operate in the positive pressure range. They increase the pressure above atmospheric pressure, typically measured in units like pounds per square inch (psi) or bar.

3. Applications:

– Vacuum Pumps: Vacuum pumps have various applications where the creation of a vacuum or low-pressure environment is required. They are used in processes such as vacuum distillation, vacuum drying, vacuum packaging, and vacuum filtration. They are also essential in scientific research, semiconductor manufacturing, medical suction devices, and many other industries.

– Air Compressors: Air compressors find applications where compressed air or gas at high pressure is needed. They are used in pneumatic tools, manufacturing processes, air conditioning systems, power generation, and inflating tires. Compressed air is versatile and can be employed in numerous industrial and commercial applications.

4. Design and Mechanism:

– Vacuum Pumps: Vacuum pumps are designed to create a vacuum by removing air or gas from a closed system. They may use mechanisms such as positive displacement, entrapment, or momentum transfer to achieve the desired vacuum level. Examples of vacuum pump types include rotary vane pumps, diaphragm pumps, and diffusion pumps.

– Air Compressors: Air compressors are engineered to compress air or gas, increasing its pressure and decreasing its volume. They use mechanisms like reciprocating pistons, rotary screws, or centrifugal force to compress the air or gas. Common types of air compressors include reciprocating compressors, rotary screw compressors, and centrifugal compressors.

5. Direction of Air/Gas Flow:

– Vacuum Pumps: Vacuum pumps draw air or gas into the pump and then expel it from the system, creating a vacuum within the chamber or system being evacuated.

– Air Compressors: Air compressors take in ambient air or gas and compress it, increasing its pressure and storing it in a tank or delivering it directly to the desired application.

While vacuum pumps and air compressors have different functions and operate under distinct pressure ranges, they are both vital in various industries and applications. Vacuum pumps create and maintain a vacuum or low-pressure environment, while air compressors compress air or gas to higher pressures for different uses and processes.

China best -26hg&rsquor; &rsquor; Silent Oilless Vacuum Pump for Laboratory Cleaning   vacuum pump electricChina best -26hg&rsquor; &rsquor; Silent Oilless Vacuum Pump for Laboratory Cleaning   vacuum pump electric
editor by Dream 2024-04-29

China OEM Laboratory Small Water Liquid Ring Vacuum Pump for Mini Rotary Evaporator vacuum pump belt

Product Description

Laboratory small water liquid ring vacuum pump for mini rotary evaporator
 

The series of Multi-purpose Circulating Water Vacuum Pump takes circulating water as working fluid, uses the negative pressure created by fluid jet to eject.

Providing vacuum condition for the processes of evaporation, distillation, crystallization, drying, sublimation, filtration and decompression, degassing and so on, particularly be suitable for labs and small scale test of industries such as universities and colleges, scientific research institutes, chemical industry, pharmacy, biochemistry, foodstuff pesticide, agricultural engineering, biological engineering.

1. Cyclically use water, save the precious water resources.

2. Save more than 35% of electricity than other type of vacuum pump.

3. The fluid muffler purpose made can reduce the gas in water and make the vacuum degree higher and more stable; reduce the friction between gas and fluid, reduce the noise.

4. Double-tap, double-display can be used alone or in parallel.

5. Resist corrosion by acid, alkali and solvents

6. The special machine is made by the famous electric manufacture ODM with fluorine rubber sealing, the inner of which can’t be intruded by corrosive gas.

7. Need to replace the water in the flume regularly to ensure the purity of water quality, the vacuum degree and to avoid dirt stains.

8. Can be used to extract corrosive gas, need to shorten the period of water changing.

9. SHB-3: shell, flume, ejector, tee junction, check valve and gas-extraction nozzle adopt the PP material; pump body and impeller(six flow passages, dual seal) adopt stainless steel plate pressing, the material is in accordance with the SUS standard.

10. SHB-3A: ejector and gas-extraction nozzle adopt stainless steel material(SUS standard), the rest is the same as SHB-3.

11. SHB-3S: Pump body adopts the pp material, which is suitable for acid gas the rest is the same as SHB-3.

12. SHB-3T: lucid flume is convenient for observe water level and water quality, the rest is the same as SHB-3A.

Model SHZ-D
Flow 20L/min
Lift head 8m
Volume 15L
Number of taps 2
Sucking volume 10L/min
Vacuum 0.098Mpa
Power 180W
Voltage 220V
Material anticorrosion
Size 400*280*420mm
Weight 15kg

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 12month
Oil or Not: Water
Structure: Water Circulating
Vacuum Degree: Low Vacuum
Working Conditions: Wet
Product Name: Water Circulating Vacuum Pump
Customization:
Available

|

Vacuum Pump

Basic knowledge of vacuum pump

A vacuum pump is used to create a relative vacuum within a sealed volume. These pumps take gas molecules out of the sealed volume and expel them, leaving a partial vacuum. They can be used in a variety of applications, including medicine and laboratory research. This article will cover the basics of vacuum pumps, including how they operate and the materials they use. You will also learn about typical applications and fees.

How it works

A vacuum pump is a pump that removes air from a specific space. These pumps are divided into three types according to their function. Positive displacement pumps are used in the low vacuum range and high vacuum pumps are used in the ultra-high vacuum range. The performance of a vacuum pump depends on the quality of the vacuum it produces.
A vacuum pump creates a partial vacuum above the surrounding atmospheric pressure. The speed of the pump is proportional to the pressure difference between the ambient atmosphere and the base pressure of the pump. Choose a base pressure for a specific process, not the lowest possible pressure in the system.
A scroll pump is also a type of vacuum pump. This type of pump consists of two scrolls, the inner scroll running around the gas volume. It then compresses the gas in a spiral fashion until it reaches the maximum pressure at its center. The inner and outer scrolls are separated by a polymer tip seal that provides an axial seal between them. Its pumping speed ranges from 5.0 to 46 m3/h.
Another type of vacuum pump is the screw pump, which uses two rotating screws in one chamber. The screw in the screw pump is a left-handed screw, and the other is a right-handed screw. The two screws do not touch each other when engaged, preventing contamination of the medium. They also feature high pumping speeds, low operating costs and low maintenance requirements.
The vacuum pump consists of several parts such as rotor and base. These components create an area of ​​low pressure. Gas and water molecules rush into this low pressure area, where they are sucked into the pump. The pump also rotates, preventing fluid leakage to the low pressure side.
The main function of a vacuum pump is to remove gas particles from an enclosed space. It does this by changing gas molecules between high and low pressure states. A vacuum pump can also generate a partial vacuum. There are several types of vacuum pumps, each designed to perform a specific function, so it is important to choose the right type for your application.

Vacuum Pump Materials

There are two main materials used in vacuum pumps: metal and polyethylene. Metal is more durable, while polyethylene is cheaper and more flexible. However, these materials are not suitable for high pressure and may cause damage. Therefore, if you want to design a high-pressure pump, it is best to use metal materials.
Vacuum pumps are required in a variety of industrial environments and manufacturing processes. The most common vacuum pump is a positive displacement vacuum pump, which transports a gas load from the inlet to the outlet. The main disadvantage of this pump is that it can only generate a partial vacuum; higher vacuums must be achieved through other techniques.
Materials used in vacuum pumps vary from high to rough vacuum pumps. Low pressure ranges are typically below 1 x 10-3 mbar, but high vacuum pumps are used for extreme vacuum. They also differ in manufacturing tolerances, seals used, materials used and operating conditions.
The choice of vacuum pump material depends on the process. The vacuum range and ultimate pressure of the system must be carefully analyzed to find the right material for the job. Depending on the purpose of the pump, a variety of materials can be used, from ceramic to plastic substrates. When choosing a vacuum pump material, be sure to consider its durability and corrosion resistance.
Dry and wet vacuum pumps use oil to lubricate internal parts. This prevents wear of the pump due to corrosion. These types of pumps are also recommended for continuous use and are ideal for applications where the gas is acidic or corrosive. Therefore, they are widely used in the chemical and food industries. They are also used in rotary evaporation and volatile compound processing.
Positive displacement pumps are the most common type. They work by letting gas flow into a cavity and venting it into the atmosphere. Additionally, momentum transfer pumps, also known as molecular pumps, use high-velocity jets of high-density fluids to transport air and gases. These pumps are also used for medical purposes.

Typical application

Vacuum pumps are used to remove large amounts of air and water from the process. They are used in various industries to improve performance. For example, liquid ring vacuum pumps are used in packaging production to produce plastic sheets in the desired shape and size. Large-capacity suction pumps are used in the chemical industry to improve the surface properties of materials and speed up filtration.
There are two basic principles of vacuum pumps: entrapment and gas transfer. Positive displacement pumps are suitable for low to medium vacuums, while momentum transfer and retention pumps are suitable for high vacuums. Typically, high vacuum systems use two or more pumps working in series.
There are three main categories of vacuum pumps: primary, booster, and secondary. Their working pressure ranges from a few millimeters above atmospheric pressure. They also have several different technologies, including positive displacement, gas transfer, and gas capture. These pumps transport gas molecules through momentum exchange. Typically, they release gas molecules at roughly the same rate as they entered. When the process is complete, the gas molecules are slightly above atmospheric pressure. The discharge pressure is equal to the lowest pressure achieved, which is the compression ratio.
Vacuum pumps are widely used in all walks of life. They can be found in almost every industrial sector, including food processing. For example, they are used to make sausages and food products. In addition, they are used in landfill and digester compressors. They can also be used to build solar panels.
Oil lubricated vacuum pumps are currently the most energy-efficient vacuum pumps. These pumps are suitable for a variety of industrial applications including freeze drying and process engineering. These pumps use oil as a sealant and coolant, which makes them ideal for a variety of applications. These pumps are also very sensitive to vibration.
Another type of vacuum pump is a turbomolecular pump. These pumps have multiple stages and angled vanes. Unlike mechanical pumps, turbomolecular pumps sweep out larger areas at higher pumping speeds. In addition, they can generate ultra-high oil-free vacuums. Additionally, they have no moving parts, which makes them ideal for high vacuum pressures.
Vacuum Pump

Vacuum Pump Cost

Annual maintenance costs for vacuum pumps range from $242 to $337. The energy consumption of the vacuum pump is also a consideration, as it consumes electricity throughout its operating cycle. For example, an electric motor for a 1 hp pump uses 0.55 kW/hr, which equates to 2,200 kWh of energy per year.
Energy cost is the largest part of the total cost of a vacuum pump. They are usually four to five times higher than the initial purchase price. Therefore, choosing a more energy efficient system can reduce the total cost of ownership and extend the payback period. For many clients, this can be millions of dollars.
A vacuum pump works by compressing gas as it enters a chamber. This pushes the gas molecules towards the exhaust. The exhaust gas is then vented to the atmosphere. A special spring-loaded vane seals the pump’s chamber, creating an airtight seal. Specially formulated oils are also used to lubricate, cool and seal rotors.
Vacuum pumps are not cheap, but they have many advantages over water suction. One of the main advantages of vacuum pumps is their flexibility and reliability. This is an industry-proven solution that has been around for years. However, the initial cost of a vacuum pump is higher than that of a water aspirator.
If the vacuum pump fails unexpectedly, replacement costs can be high. Proper maintenance can extend the life of your system and prevent unplanned downtime. However, no one can predict when a pump will fail, and if a pump does fail, the cost can far exceed the cost of buying a new pump. Therefore, investing in preventive maintenance is a wise investment.
There are many types of vacuum pumps, not all of which are suitable for the same type of application. Make sure to choose a pump with the power required for the job. It should also be able to handle a variety of samples.

China OEM Laboratory Small Water Liquid Ring Vacuum Pump for Mini Rotary Evaporator   vacuum pump belt	China OEM Laboratory Small Water Liquid Ring Vacuum Pump for Mini Rotary Evaporator   vacuum pump belt
editor by CX 2024-04-17

China Custom Gwsp75 High Efficiency Dry Vacuum Pump for Laboratory a/c vacuum pump

Product Description

 

Product Description

GWSP Oil free Scroll Vacuum Pump

Working principle:
GWSP oil free scroll vacuum pump is constructed with pump head assembly, crank pin assembly, bracket assembly, air flush assembly,and exhaust valve assembly.Two spiral cylinders, 1 offset and orbiting against the other fixed with an offset of 180° to form several crescent-shaped pockets of different sizes. By means of an eccentric drive, the orbiting scroll is made to orbit about the fixed scroll, reducing the volume of the pockets and compressing gas from outside towards the inside thereby pumping the gas from vacuum chamber.

Basic informations:
1) Model: GWSP600 Oil free scroll vacuum pump
2) Ultimate vacuum pressure: 1.0Pa/0.01 mbar (abs.)
3) Max suction capacity: 50Hz-8.7L/s 60Hz-10.4L/s

Safety Precautions:
The GWSP series oil free scroll vacuum pumps are suitable for clean processes only.
Do not pump toxic, explosive, flammable or corrosive substances or substances which contain chemicals, solvents or particles.GEOWELL will not perform maintenance work on pumps which have used special gases or other hazardous substances.
Be sure the inlet gas temperature must be lower than 122 °F.
 

Technical Specifications

Technical Specifications:

  Model GWSP40 GWSP75 GWSP150 GWSP300 GWSP600 GWSP1000
  Displacement 50Hz l/s 0.5 1.0  2.0  4.3 8.7 16.6
m3/h 1.8 3.6 7.2 15.5 31.3 59.8
cfm 1.1 2.1 4.3 9.3 18.7 35.8
60Hz l/s 0.6 1.2 2.4 5.1 10.4 20.0 
m3/h 2.2 4.3 8.6 18.3 37.4 71.6
cfm 1.3 2.5 5.1 10.9 22.3 42.8
  Ultimate Pressure Torr   ≤1.1*10-1   ≤6.0*10-2   ≤4.5*10-2   ≤1.9*10-2   ≤7.5*10-3   ≤7.5*10-3
psi   ≤2.2*10-3   ≤1.2*10-3   ≤9.0*10-4   ≤3.8*10-4   ≤1.5*10-4   ≤1.5*10-4
Pa   ≤15   ≤8   ≤6   ≤2.6   ≤1   ≤1
mbar   ≤1.5*10-1   ≤8.0*10-2   ≤6.0*10-2   ≤2.6*10-2   ≤1.0*10-2   ≤1.0*10-2
  Noise Level dB(A)   ≤54   ≤57   ≤57   ≤60   ≤61   ≤65
  Leakage mbar·l/s 1*10-7
  Max. Inlet/Exhaust Pressure MPa 0.1 / 0.13
  Ambient Operation Temp. ºF 41~104
  Motor 1 phase Power kW 0.25 0.55 0.55 0.55 0.75
Voltage V   110~115 (60Hz),200~230 (50Hz)
Speed rpm 1425(50Hz),1725(60Hz)
Plug   North America, Europe, UK/Ireland, India
  Motor 3 phase Power kW 0.55 0.55 0.55 0.75 1.5
Voltage V 200~230 or 380~415 (50Hz),200~230 or 460 (60Hz)
Speed rpm      1425 (50Hz),1725 (60Hz)
  Inlet/Exhaust Flange   KF25/KF16 KF40/KF16 KF40/KF16*2
  Dimensions 1 phase mm 326*212*253 450*260*296 455*260*296 493*297*334 538*315*348
3 phase mm 450*260*296 455*260*296 493*297*334 538*315*348 576*450*402
  Net Weight 1 phase kg 15 21 22 29 36
3 phase kg 20 21 28 31 54
  Cooling Type   Air cooled
  Others   With air flush

Features & Benefits

Features & Benefits:

No oil clean vacuum.
No oil back-diffusion, no oil mist exhaust, provide clean vacuum environment
Wide product lineup.
Pumping speed covers 3~60 m3 /h, limited vacuum level 1~8 Pa
Suitable for all type of power supply around the world.
110/220/380/460V, 50/60Hz for choose
Low vibration, low noise.
57~65 dB(A), smooth operation
High efficiency, ease of maintenance.
No water cooled, no oil lubricated, no daily maintenance
 

 

 

Quality Control

CMM inspection system assures
fixed tolarance on dimension&shape

Pump Testing

Applications

Analyzing instrument and device.
Spectroscopy/scHangZhou electron microscopy.
Space environment simulation machine.
Helium Leak detector.
Mass spectrometer.
Cryopump regeneration.
Accelerators/synchrotrons.

Food and drug industry.
Freezing dryer.
Vacuum storage.
Medical equipment
Low temperature plasma sterilizer.
Vacuum storage.
Dental equipment.

Vacuum equipment.
Oil free ultrahigh vacuum unit
Oil free vacuum unit

Company Profile

Company Profile
GEOWELL VACUUM CO.,LTD. is a HI-TECH enterprise in China dedicating in manufacturing, research and development, marketing of oil free scroll vacuum pumps and vacuum compressors since 2002. GEOWELL has been providing users and partners with premium quality products that are efficient and dependable, GEOWELL believe the integration of high performance and high reliability product and service will bring the highest value to both our customers and ourselves.

FAQ

Question&Answers
Q: How long can I get the feedback after we sent the inquiry?
A: We will reply you within 12 hours in working day.
Q: Are you direct manufacturer?
A: Yes, we are direct manufacturer with factory and international department; we manufacture and sell all our products by ourselves.
Q: When can you delivery the product to us?
A: Since we are a factory with large warehouse, we have abundant products in store, so we can delivery within 7 days after get your deposit.
Q: Can I add logo to the products?
A: Of course, but we usually have quantity requirement. You can contact with us for details.
Q: How to guarantee the quality and after sales service of your products?
A: We conduct strict detection during production from raw material come in to product delivering shipment. Every product must go through 4 steps inspection from casting, machining, assembling, and performance testing within our factory before shipment, also intact packaging test are insured.
Q: What is your warranty term?
A: There is a 12 months warranty for our export products from the date of shipment. If warranty has run out, our customer should pay for the replacement part.
Q: Is the sample available?
A: Yes, usually we send our samples by Fedex, DHL, TNT, UPS, EMS, SF, Depon, it will take around 3 to 4 days for our customer receive them, but customer will charge all cost related to the samples, such as sample cost and air freight. We will refund our customer the sample cost after receiving the order.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Years
Oil or Not: Oil Free
Structure: Scroll Pump
Exhauster Method: a Pair of Vortex Discs
Vacuum Degree: Low Vacuum
Customization:
Available

|

vacuum pump

How Do You Maintain and Troubleshoot Vacuum Pumps?

Maintaining and troubleshooting vacuum pumps is essential to ensure their optimal performance and longevity. Here’s a detailed explanation:

Maintenance of Vacuum Pumps:

1. Regular Inspection: Perform regular visual inspections of the pump to check for any signs of damage, leaks, or abnormal wear. Inspect the motor, belts, couplings, and other components for proper alignment and condition.

2. Lubrication: Follow the manufacturer’s guidelines for lubrication. Some vacuum pumps require regular oil changes or lubrication of moving parts. Ensure that the correct type and amount of lubricant are used.

3. Oil Level Check: Monitor the oil level in oil-sealed pumps and maintain it within the recommended range. Add or replace oil as necessary, following the manufacturer’s instructions.

4. Filter Maintenance: Clean or replace filters regularly to prevent clogging and ensure proper airflow. Clogged filters can impair pump performance and increase energy consumption.

5. Cooling System: If the vacuum pump has a cooling system, inspect it regularly for cleanliness and proper functioning. Clean or replace cooling components as needed to prevent overheating.

6. Seals and Gaskets: Check the seals and gaskets for signs of wear or leakage. Replace any damaged or worn seals promptly to maintain airtightness.

7. Valve Maintenance: If the vacuum pump includes valves, inspect and clean them regularly to ensure proper operation and prevent blockages.

8. Vibration and Noise: Monitor the pump for excessive vibration or unusual noise, which may indicate misalignment, worn bearings, or other mechanical issues. Address these issues promptly to prevent further damage.

Troubleshooting Vacuum Pump Problems:

1. Insufficient Vacuum Level: If the pump is not achieving the desired vacuum level, check for leaks in the system, improper sealing, or worn-out seals. Inspect valves, connections, and seals for leaks and repair or replace as needed.

2. Poor Performance: If the pump is not providing adequate performance, check for clogged filters, insufficient lubrication, or worn-out components. Clean or replace filters, ensure proper lubrication, and replace worn parts as necessary.

3. Overheating: If the pump is overheating, check the cooling system for blockages or insufficient airflow. Clean or replace cooling components and ensure proper ventilation around the pump.

4. Excessive Noise or Vibration: Excessive noise or vibration may indicate misalignment, worn bearings, or other mechanical issues. Inspect and repair or replace damaged or worn parts. Ensure proper alignment and balance of rotating components.

5. Motor Issues: If the pump motor fails to start or operates erratically, check the power supply, electrical connections, and motor components. Test the motor using appropriate electrical testing equipment and consult an electrician or motor specialist if necessary.

6. Excessive Oil Consumption: If the pump is consuming oil at a high rate, check for leaks or other issues that may be causing oil loss. Inspect seals, gaskets, and connections for leaks and repair as needed.

7. Abnormal Odors: Unusual odors, such as a burning smell, may indicate overheating or other mechanical problems. Address the issue promptly and consult a technician if necessary.

8. Manufacturer Guidelines: Always refer to the manufacturer’s guidelines and recommendations for maintenance and troubleshooting specific to your vacuum pump model. Follow the prescribed maintenance schedule and seek professional assistance when needed.

By following proper maintenance procedures and promptly addressing any troubleshooting issues, you can ensure the reliable operation and longevity of your vacuum pump.

vacuum pump

Can Vacuum Pumps Be Used for Chemical Distillation?

Yes, vacuum pumps are commonly used in chemical distillation processes. Here’s a detailed explanation:

Chemical distillation is a technique used to separate or purify components of a mixture based on their different boiling points. The process involves heating the mixture to evaporate the desired component and then condensing the vapor to collect the purified substance. Vacuum pumps play a crucial role in chemical distillation by creating a reduced pressure environment, which lowers the boiling points of the components and enables distillation at lower temperatures.

Here are some key aspects of using vacuum pumps in chemical distillation:

1. Reduced Pressure: By creating a vacuum or low-pressure environment in the distillation apparatus, vacuum pumps lower the pressure inside the system. This reduction in pressure lowers the boiling points of the components, allowing distillation to occur at temperatures lower than their normal boiling points. This is particularly useful for heat-sensitive or high-boiling-point compounds that would decompose or become thermally degraded at higher temperatures.

2. Increased Boiling Point Separation: Vacuum distillation increases the separation between the boiling points of the components, making it easier to achieve a higher degree of purification. In regular atmospheric distillation, the boiling points of some components may overlap, leading to less effective separation. By operating under vacuum, the boiling points of the components are further apart, improving the selectivity and efficiency of the distillation process.

3. Energy Efficiency: Vacuum distillation can be more energy-efficient compared to distillation under atmospheric conditions. The reduced pressure lowers the required temperature for distillation, resulting in reduced energy consumption and lower operating costs. This is particularly advantageous when dealing with large-scale distillation processes or when distilling heat-sensitive compounds that require careful temperature control.

4. Types of Vacuum Pumps: Different types of vacuum pumps can be used in chemical distillation depending on the specific requirements of the process. Some commonly used vacuum pump types include:

– Rotary Vane Pumps: Rotary vane pumps are widely used in chemical distillation due to their ability to achieve moderate vacuum levels and handle various gases. They work by using rotating vanes to create chambers that expand and contract, enabling the pumping of gas or vapor.

– Diaphragm Pumps: Diaphragm pumps are suitable for smaller-scale distillation processes. They use a flexible diaphragm that moves up and down to create a vacuum and compress the gas or vapor. Diaphragm pumps are often oil-free, making them suitable for applications where avoiding oil contamination is essential.

– Liquid Ring Pumps: Liquid ring pumps can handle more demanding distillation processes and corrosive gases. They rely on a rotating liquid ring to create a seal and compress the gas or vapor. Liquid ring pumps are commonly used in chemical and petrochemical industries.

– Dry Screw Pumps: Dry screw pumps are suitable for high-vacuum distillation processes. They use intermeshing screws to compress and transport gas or vapor. Dry screw pumps are known for their high pumping speeds, low noise levels, and oil-free operation.

Overall, vacuum pumps are integral to chemical distillation processes as they create the necessary reduced pressure environment that enables distillation at lower temperatures. By using vacuum pumps, it is possible to achieve better separation, improve energy efficiency, and handle heat-sensitive compounds effectively. The choice of vacuum pump depends on factors such as the required vacuum level, the scale of the distillation process, and the nature of the compounds being distilled.

vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China Custom Gwsp75 High Efficiency Dry Vacuum Pump for Laboratory   a/c vacuum pump		China Custom Gwsp75 High Efficiency Dry Vacuum Pump for Laboratory   a/c vacuum pump
editor by CX 2024-04-08

China wholesaler Laboratory Mini Diaphragm Vacuum Pump Electric Diaphragm Pumps for Sale vacuum pump ac system

Product Description

Product Description

Laboratory Mini Diaphragm Vacuum Pump Electric Diaphragm Pumps for Sale
Robust PTFE coated diaphragms and valves provide high chemical resistance.
maintenance-free drive system and proven long diaphragm life
convenient, quick and simple to use due to the front switch
whisper quiet and very low vibration
requires minimal bench top space

Feature

1. High corrosion resistance
Chemker400 corrosion-resistant vacuum pump uses PTFE material in the part that is in contact with gas, which can resist most of the corrosive gas. At the same time, the electrical switch and housing are also treated with corrosion protection, which is suitable for pumping various organic, acid-base and other corrosive gases.

2. No pollution and maintenance-free
The Chemker400 corrosion-resistant vacuum pump uses the principle of Diaphragm, and does not need to use oil for lubrication, so there is no need for regular oil maintenance and no oil mist pollution.

3. Quiet, low vibration
Chemker400 corrosion-resistant vacuum pump adopts direct-drive power transmission, coupled with the low-stroke, low-noise characteristics of the diaphragm, so that the noise of this series of products can be kept below 50dB, quiet and low-vibration are among the best in the same class.

4. Overheating protection device
Chemker400 corrosion-resistant vacuum pump is equipped with a temperature protection switch inside the motor. When the internal temperature of the body is too high, it will automatically stop and wait for the temperature to cool down before starting.

Product Parameters

Model Chemker400
Power supply 220V/50Hz 110V/60Hz
Power 90W 90W
Current consumption 0.5A 1.1A
Maximum vacuum C
Maximum flow rate 33 L/min 38 L/min
Speed 1450 RPM 1700 RPM
Horsepower 1/8 HP 1/6 HP
Noise level 52 dB
Applicable hose inner diameter ID8 (5/16 inch)
Net weight 7.0 Kg
Dimensions 26.7 x 11.2 x 18.1 cm

*Optional pressure regulating valve for Chemker series corrosion-resistant vacuum pump:

Appiication range

1. Vacuum filtration

2. Electrophoresis transfer stain

3. CHINAMFG phase extraction

4. Solvent purification

Product display

Chemker600 diaphragm pump

Chemker411 diaphragm pump

Vertical water circulating vacuum pump

Benchtop water circulating vacuum pump

Company Profile

Packaging & Shipping

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Certification: CE
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum ovens and freeze-drying processes?

Yes, diaphragm vacuum pumps can be used in both vacuum ovens and freeze-drying processes. Here’s a detailed explanation:

Vacuum Ovens: Vacuum ovens are commonly used in various industries and scientific applications for drying, curing, or processing materials under low-pressure conditions. Diaphragm vacuum pumps are well-suited for vacuum oven applications due to their ability to generate and maintain the required vacuum levels. The diaphragm pump’s design, which does not require oil lubrication, makes it ideal for applications where contamination from oil vapors is a concern. The pumps can efficiently remove air and other gases from the oven chamber, creating a controlled low-pressure environment for the drying or curing process.

When selecting a diaphragm vacuum pump for a vacuum oven, several factors should be considered:

Vacuum Level: The diaphragm pump should be capable of achieving the desired vacuum level required for the specific application. Different diaphragm pump models may have different maximum achievable vacuum levels, so it’s important to choose a pump that meets the oven’s vacuum requirements.

Flow Rate: The flow rate of the diaphragm pump should be sufficient to maintain the desired vacuum level within the oven chamber. The pump’s flow rate should be able to handle any gas released during the drying or curing process and compensate for any minor leaks in the system.

Chemical Compatibility: It’s essential to consider the chemical compatibility of the diaphragm pump’s materials with the substances being processed in the vacuum oven. Some diaphragm pumps are designed with chemically resistant materials, allowing them to handle corrosive or reactive gases without degradation or contamination.

Freeze-Drying Processes: Freeze-drying, also known as lyophilization, is a process used to remove moisture from products while preserving their structure and integrity. Diaphragm vacuum pumps can be employed in freeze-drying systems to create the necessary low-pressure environment for sublimation, where ice is directly converted from solid to vapor without passing through a liquid phase.

In freeze-drying processes, diaphragm vacuum pumps play a crucial role in two main stages:

Freezing Stage: The diaphragm pump can be used to evacuate the moisture or solvent vapors released during the freezing step of the freeze-drying process. By removing these vapors, the pump helps maintain a controlled environment during freezing and prevents ice buildup on the product.

Drying Stage: Once the product is frozen, the diaphragm vacuum pump is utilized to create a vacuum within the freeze-drying chamber. This vacuum environment allows the frozen moisture to sublime, transforming it directly from ice to vapor. The diaphragm pump continuously removes the vapor, aiding in the drying process and facilitating efficient moisture removal from the product.

Similar to vacuum oven applications, when choosing a diaphragm vacuum pump for freeze-drying processes, factors such as vacuum level capability, flow rate, and chemical compatibility should be considered. Additionally, the pump should be able to handle the potential condensable vapors generated during the sublimation process.

In summary, diaphragm vacuum pumps are suitable for use in vacuum ovens and freeze-drying processes. They can effectively create and maintain the required low-pressure environments for drying, curing, and sublimation. When selecting a diaphragm pump for these applications, factors such as vacuum level, flow rate, chemical compatibility, and the presence of condensable vapors should be taken into account to ensure optimal performance and successful operation.

diaphragm vane pump

What is the noise level produced by diaphragm vacuum pumps during operation?

The noise level produced by diaphragm vacuum pumps during operation can vary depending on factors such as pump design, size, and operating conditions. Here’s a detailed explanation:

Diaphragm vacuum pumps are generally known for their relatively quiet operation compared to other types of vacuum pumps. The noise level produced by diaphragm pumps is typically lower than that of oil-sealed rotary vane pumps or piston pumps.

The noise level is influenced by various factors, including:

Pump Design: The design of the diaphragm pump can affect the noise level. Some pumps are specifically engineered to minimize noise by incorporating features such as noise-reducing materials, vibration dampening mechanisms, or sound insulation.

Pump Size and Power: Larger diaphragm pumps may generate more noise compared to smaller ones due to increased air displacement and higher power requirements. It’s important to consider the specific size and power rating of the pump when evaluating its noise level.

Operating Conditions: The noise level can also be influenced by the operating conditions of the diaphragm pump. Factors such as speed, temperature, and the presence of vibrations or resonances in the system can impact the overall noise output.

While diaphragm vacuum pumps are generally considered to have low noise levels, it’s important to note that individual pump models may have different noise specifications. Manufacturers often provide noise level data in the pump’s technical documentation, which can help in selecting a pump that meets specific noise requirements.

Additionally, it’s worth considering noise reduction measures such as using vibration isolation pads, enclosing the pump in a soundproof housing, or employing remote mounting techniques to further minimize any noise generated by the pump.

In summary, diaphragm vacuum pumps are known for their relatively quiet operation compared to other types of vacuum pumps. However, the actual noise level produced can vary depending on factors such as pump design, size, and operating conditions. Consulting the manufacturer’s specifications and implementing noise reduction measures can help ensure a suitable noise level for the intended application.

diaphragm vane pump

What are the advantages of using diaphragm vacuum pumps in various applications?

Diaphragm vacuum pumps offer several advantages that make them well-suited for various applications. Here’s a detailed explanation of the advantages:

1. Oil-Free and Contamination-Free Operation:

Diaphragm vacuum pumps are designed to be oil-free, meaning they do not require lubricating oil for operation. This eliminates the risk of oil contamination in the pumped gas or vapor, making them ideal for applications that require clean and uncontaminated vacuum conditions. Industries such as laboratory research, medical and healthcare, and semiconductor manufacturing benefit from the oil-free operation of diaphragm pumps.

2. Chemical Resistance:

Diaphragm pumps are typically constructed with materials that offer excellent chemical resistance. The diaphragm, valves, and other wetted parts are often made of chemically resistant materials such as rubber or elastomer. This allows diaphragm vacuum pumps to handle corrosive or reactive gases without degradation or contamination, making them suitable for applications in chemical processing, environmental monitoring, and analytical laboratories.

3. Gentle and Pulsation-Free Operation:

Diaphragm pumps provide a gentle pumping action that is free from pulsations. This characteristic is particularly advantageous in applications that require precise control or sensitive handling of gases or delicate samples. Examples include vacuum filtration, vacuum drying, degassing processes, and laboratory applications where consistent and smooth vacuum conditions are necessary.

4. Quiet Operation:

Diaphragm vacuum pumps are known for their quiet operation compared to other types of pumps. The reduced noise level contributes to a more comfortable working environment, making them suitable for applications where noise pollution needs to be minimized, such as laboratories, medical facilities, and research institutions.

5. Self-Priming Capability:

Diaphragm pumps are generally self-priming, meaning they can start and maintain their pumping action without the need for external priming or additional equipment. This makes them easy to use and convenient, especially in applications where frequent start-stop cycles or intermittent operation is required.

6. Compact and Portable:

Diaphragm vacuum pumps are often compact and lightweight, making them easy to install, move, or transport. Their compact size allows for flexible integration into existing systems or placement in confined spaces. The portability of diaphragm pumps is advantageous in applications that require mobility or where multiple pumping stations are needed in different locations.

7. Versatile Applications:

Diaphragm vacuum pumps find applications in a wide range of industries and fields. Some common applications include:

– Laboratory research and analysis

– Medical and healthcare

– Environmental monitoring and analysis

– Vacuum filtration

– Vacuum drying and degassing

– Automotive and manufacturing processes

– Semiconductor and electronics manufacturing

It’s important to note that the specific advantages of using diaphragm vacuum pumps can vary depending on the pump design, model, and application requirements. Manufacturers provide detailed specifications and guidelines that highlight the advantages and limitations of their diaphragm pumps for specific applications.

China wholesaler Laboratory Mini Diaphragm Vacuum Pump Electric Diaphragm Pumps for Sale   vacuum pump ac system	China wholesaler Laboratory Mini Diaphragm Vacuum Pump Electric Diaphragm Pumps for Sale   vacuum pump ac system
editor by CX 2024-03-27

China Hot selling Laboratory Mini Diaphragm Vacuum Pump Electric Diaphragm Pumps for Sale vacuum pump booster

Product Description

Product Description

Laboratory Mini Diaphragm Vacuum Pump Electric Diaphragm Pumps for Sale
Robust PTFE coated diaphragms and valves provide high chemical resistance.
maintenance-free drive system and proven long diaphragm life
convenient, quick and simple to use due to the front switch
whisper quiet and very low vibration
requires minimal bench top space

Feature

1. High corrosion resistance
Chemker400 corrosion-resistant vacuum pump uses PTFE material in the part that is in contact with gas, which can resist most of the corrosive gas. At the same time, the electrical switch and housing are also treated with corrosion protection, which is suitable for pumping various organic, acid-base and other corrosive gases.

2. No pollution and maintenance-free
The Chemker400 corrosion-resistant vacuum pump uses the principle of Diaphragm, and does not need to use oil for lubrication, so there is no need for regular oil maintenance and no oil mist pollution.

3. Quiet, low vibration
Chemker400 corrosion-resistant vacuum pump adopts direct-drive power transmission, coupled with the low-stroke, low-noise characteristics of the diaphragm, so that the noise of this series of products can be kept below 50dB, quiet and low-vibration are among the best in the same class.

4. Overheating protection device
Chemker400 corrosion-resistant vacuum pump is equipped with a temperature protection switch inside the motor. When the internal temperature of the body is too high, it will automatically stop and wait for the temperature to cool down before starting.

Product Parameters

Model Chemker400
Power supply 220V/50Hz 110V/60Hz
Power 90W 90W
Current consumption 0.5A 1.1A
Maximum vacuum C
Maximum flow rate 33 L/min 38 L/min
Speed 1450 RPM 1700 RPM
Horsepower 1/8 HP 1/6 HP
Noise level 52 dB
Applicable hose inner diameter ID8 (5/16 inch)
Net weight 7.0 Kg
Dimensions 26.7 x 11.2 x 18.1 cm

*Optional pressure regulating valve for Chemker series corrosion-resistant vacuum pump:

Appiication range

1. Vacuum filtration

2. Electrophoresis transfer stain

3. CHINAMFG phase extraction

4. Solvent purification

Product display

Chemker600 diaphragm pump

Chemker411 diaphragm pump

Vertical water circulating vacuum pump

Benchtop water circulating vacuum pump

Company Profile

Packaging & Shipping

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Certification: CE
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum ovens and freeze-drying processes?

Yes, diaphragm vacuum pumps can be used in both vacuum ovens and freeze-drying processes. Here’s a detailed explanation:

Vacuum Ovens: Vacuum ovens are commonly used in various industries and scientific applications for drying, curing, or processing materials under low-pressure conditions. Diaphragm vacuum pumps are well-suited for vacuum oven applications due to their ability to generate and maintain the required vacuum levels. The diaphragm pump’s design, which does not require oil lubrication, makes it ideal for applications where contamination from oil vapors is a concern. The pumps can efficiently remove air and other gases from the oven chamber, creating a controlled low-pressure environment for the drying or curing process.

When selecting a diaphragm vacuum pump for a vacuum oven, several factors should be considered:

Vacuum Level: The diaphragm pump should be capable of achieving the desired vacuum level required for the specific application. Different diaphragm pump models may have different maximum achievable vacuum levels, so it’s important to choose a pump that meets the oven’s vacuum requirements.

Flow Rate: The flow rate of the diaphragm pump should be sufficient to maintain the desired vacuum level within the oven chamber. The pump’s flow rate should be able to handle any gas released during the drying or curing process and compensate for any minor leaks in the system.

Chemical Compatibility: It’s essential to consider the chemical compatibility of the diaphragm pump’s materials with the substances being processed in the vacuum oven. Some diaphragm pumps are designed with chemically resistant materials, allowing them to handle corrosive or reactive gases without degradation or contamination.

Freeze-Drying Processes: Freeze-drying, also known as lyophilization, is a process used to remove moisture from products while preserving their structure and integrity. Diaphragm vacuum pumps can be employed in freeze-drying systems to create the necessary low-pressure environment for sublimation, where ice is directly converted from solid to vapor without passing through a liquid phase.

In freeze-drying processes, diaphragm vacuum pumps play a crucial role in two main stages:

Freezing Stage: The diaphragm pump can be used to evacuate the moisture or solvent vapors released during the freezing step of the freeze-drying process. By removing these vapors, the pump helps maintain a controlled environment during freezing and prevents ice buildup on the product.

Drying Stage: Once the product is frozen, the diaphragm vacuum pump is utilized to create a vacuum within the freeze-drying chamber. This vacuum environment allows the frozen moisture to sublime, transforming it directly from ice to vapor. The diaphragm pump continuously removes the vapor, aiding in the drying process and facilitating efficient moisture removal from the product.

Similar to vacuum oven applications, when choosing a diaphragm vacuum pump for freeze-drying processes, factors such as vacuum level capability, flow rate, and chemical compatibility should be considered. Additionally, the pump should be able to handle the potential condensable vapors generated during the sublimation process.

In summary, diaphragm vacuum pumps are suitable for use in vacuum ovens and freeze-drying processes. They can effectively create and maintain the required low-pressure environments for drying, curing, and sublimation. When selecting a diaphragm pump for these applications, factors such as vacuum level, flow rate, chemical compatibility, and the presence of condensable vapors should be taken into account to ensure optimal performance and successful operation.

diaphragm vane pump

Can diaphragm vacuum pumps be used in vacuum filtration setups?

Yes, diaphragm vacuum pumps are commonly used in vacuum filtration setups. Here’s a detailed explanation:

Vacuum filtration is a widely used technique in various fields, including laboratory research, pharmaceutical manufacturing, and industrial processes. It involves applying a vacuum to a filter apparatus to facilitate the separation of solids from liquids or gases.

Diaphragm vacuum pumps are well-suited for vacuum filtration setups due to the following reasons:

Oil-Free Operation: Diaphragm pumps operate without the need for oil lubrication. This oil-free operation is particularly advantageous in vacuum filtration, as it eliminates the risk of oil contamination that could interfere with the filtration process or contaminate the filtrate.

Chemical Compatibility: Diaphragm pumps are available in various chemically resistant materials such as PTFE (polytetrafluoroethylene) or other corrosion-resistant polymers. This allows them to handle a wide range of filtration applications involving different chemicals or solvents without the risk of material degradation.

Adjustable Vacuum Levels: Diaphragm vacuum pumps offer adjustable vacuum levels, allowing users to control and optimize the filtration process. The vacuum level can be adjusted based on the specific filtration requirements, such as the nature of the filter medium, the volume of the sample, or the desired filtration rate.

Compact and Portable: Diaphragm vacuum pumps are often compact and lightweight, making them suitable for benchtop or portable filtration setups. Their small footprint and ease of operation make them convenient for use in various laboratory or field applications.

When using diaphragm vacuum pumps in vacuum filtration setups, it’s important to consider the following factors:

Flow Rate: Diaphragm pumps are available in different flow rate capacities. It’s essential to select a pump with an appropriate flow rate to ensure efficient filtration without excessive filtration time or clogging of the filter media.

Compatibility with Filtration Apparatus: Diaphragm pumps should be compatible with the specific filtration apparatus being used, including the filter flask, filter holder, and associated tubing or connectors. Ensuring proper compatibility and airtight connections is crucial for achieving effective vacuum filtration.

In summary, diaphragm vacuum pumps are well-suited for vacuum filtration setups due to their oil-free operation, chemical compatibility, adjustable vacuum levels, and compact design. They offer reliable and efficient performance in a wide range of filtration applications, making them a popular choice in laboratories, pharmaceutical manufacturing, and industrial processes.

diaphragm vane pump

What are the key components of a diaphragm vacuum pump?

A diaphragm vacuum pump consists of several key components that work together to create vacuum or low-pressure conditions. Here’s a detailed explanation of these components:

1. Diaphragm:

The diaphragm is the central component of a diaphragm vacuum pump. It is a flexible membrane that moves back and forth within a chamber to generate the pumping action. The diaphragm is typically made of a durable, chemically resistant material such as rubber or elastomer. It is responsible for creating changes in the chamber volume, resulting in suction and compression of gases.

2. Pumping Chamber:

The pumping chamber houses the diaphragm and provides the space for the diaphragm’s movement. It is a sealed chamber that expands and contracts as the diaphragm flexes. The pumping chamber is designed to be gas-tight to prevent leakage and maintain the vacuum or low-pressure conditions.

3. Inlet and Outlet Valves:

Diaphragm vacuum pumps typically have inlet and outlet valves that control the flow of gases into and out of the pumping chamber.

Inlet Valve: The inlet valve allows gas or vapor to enter the pumping chamber during the suction phase. It opens when the diaphragm moves downward, creating a low-pressure region within the chamber.

Outlet Valve: The outlet valve allows the compressed gas to be expelled from the pumping chamber during the compression and exhaust phases. It opens when the diaphragm moves upward, compressing the gas and forcing it out of the chamber.

4. Drive Mechanism:

The drive mechanism provides the motion and power to move the diaphragm back and forth within the pumping chamber. It can be an electric motor, a pneumatic actuator, or other mechanisms depending on the pump design. The drive mechanism ensures the continuous operation of the diaphragm, creating the pumping action.

5. Check Valves:

Check valves, also known as one-way valves or non-return valves, are often incorporated into diaphragm vacuum pumps to ensure the flow of gas occurs in the desired direction.

Inlet Check Valve: The inlet check valve allows gas to enter the pumping chamber during the suction phase but prevents backflow when the diaphragm moves upward during compression and exhaust phases.

Outlet Check Valve: The outlet check valve allows the compressed gas to be expelled from the pumping chamber during the compression and exhaust phases but prevents backflow into the chamber during the suction phase.

6. Housing and Mounting:

The housing of a diaphragm vacuum pump encloses and protects the internal components. It is typically made of a sturdy material such as metal or plastic. The housing also provides mounting points for the pump, allowing it to be securely installed in various orientations or integrated into larger systems.

7. Control and Monitoring Features:

Some diaphragm vacuum pumps may include control and monitoring features such as power switches, pressure gauges, or digital interfaces. These features allow for convenient operation, monitoring of vacuum levels, and integration with control systems or automation.

It’s important to note that the specific design and configuration of diaphragm vacuum pumps may vary across different manufacturers and models. Consulting the manufacturer’s specifications and documentation will provide detailed information on the components, construction, and performance characteristics of a particular diaphragm pump.

The combination of the diaphragm, pumping chamber, valves, drive mechanism, check valves, housing, and control features enables diaphragm vacuum pumps to generate efficient and reliable vacuum or low-pressure conditions for a wide range of applications.

China Hot selling Laboratory Mini Diaphragm Vacuum Pump Electric Diaphragm Pumps for Sale   vacuum pump booster	China Hot selling Laboratory Mini Diaphragm Vacuum Pump Electric Diaphragm Pumps for Sale   vacuum pump booster
editor by CX 2024-03-27

China Custom Diaphragm Vacuum Pump GM-0.20 for Laboratory vacuum pump brakes

Product Description

Product Description

                                        Diaphragm Vacuum Pump(GM-0.20) 

Working Principle: 
The reciprocating movement of the diaphragm compresses and stretches the air in the pump chamber to form a vacuum, under the effect of the pressure difference, which is generated between the pump suction port and the external atmospheric pressure,the gas is pressed into the pump chamber,and then discharged from the exhaust port.      

   Techqiue Date-GM-0.20II

Pumping Speed 15L/Min Noise Level(dB) <60
Ultimate Pressure ≥0.075Mpa Temp of the Body(ºC) <40
Vacuum 250mbar Packing Size(mm) 245*120*160
Inlet(mm) φ6 Weight(kg) 4.5
Outlet(mm) φ6 Power Supply Customized
Ambient Temp.(ºC) 7-40 Pump Head 1
Motor Power(w) 75 Function Vacuum & Pressure 

  Relative Products:

Main Feature:
•Compact
•100% Oil-free 
•Plug and play  
•Small Footprint
•Fixing Sucker 
•Low Maintenance
•Low noise and Low Vibration
•Thermal protection device
  
Applicaiton:
 It is widely used in scientific research laboratories, instruments and meters, chemical analysis, bioengineering, automatic control, environmental protection, water treatment and many other fields.

For example:

Vacuum Adsorption

Solvent Filtration

Vacuum Disillation

Vacuum Drying

Compressing And Converting Gas

SPE (Solid Phase Extraction)

 

Packaging & Shipping

 

Certifications

Company Profile

 

ZheJiang CHINAMFG Experiment Equipment Co.,ltd is renowned as an experienced manufacture of Vacuum Pumps and Filtration Apparatus since 1993.

We are located in ZheJiang Xihu (West Lake) Dis. New Hi-Tech Zone,a villa style facility with 400 square meters,which includes research,development,production,inspection and selling department.

Our sales network is spread throughout China to extends to the United States,Europe,the Middle East,Asia and other regions of the world.We have a long-term strategic cooperation agreement with the top 500 multinational companies. Welcome your inquiry. 

FAQ

1.Are you a factory or distributor? 

   We are a factory,established in 1993. 

2.What’s the minimum order quantity?
     One set /One pkt

3. What is the delivery time?
     3-5 working days after payment for regular models and 5-10 working days for customized models.

4. Can you accept OEM or ODM?
     Yes, we can.

5.What is your Package?
   Packed with standard carton and anti-shock foam protection inside,or according to your requirement.

6.After-Sales Service:
1). One-year Warranty
2).Training how to install and operate the instruments by video
3).7*24hoursTechnology Support by e-mail/Wechat/Mobile phone

7. How to choose the suitable equipment?
    Tell us your requirements, our professional sales will introduce you the most suitable model.

8. How about the warranty for your products?
 All of our products have 1 year warranty. During the guarantee period, if there are any problem with our instrument, we will help you to solve it by sending pictures, videos or free spare parts until things get fixed. Out of guarantee, we will also help you solve the problem,but not including send free spare parts to your country.

9. Can you offer the technical support, online or site training?
We will offer technical support like operating manual, operating videos to support or provided training material of the detailed products you are interested in. If you have chance to come to ZheJiang , welcome to our office, we have samples here, and we can show you how to operate them.

After-sales Service: Support
Warranty: 1year
Oil or Not: Oil Free
Samples:
US$ 125/Set
1 Set(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

diaphragm vane pump

Can diaphragm vacuum pumps be integrated into existing laboratory setups and industrial processes?

Yes, diaphragm vacuum pumps can be integrated into existing laboratory setups and industrial processes. Here’s a detailed explanation:

Laboratory Setups: Diaphragm vacuum pumps are commonly used in laboratory environments for various applications, including filtration, aspiration, degassing, desiccation, and vacuum drying. They can be easily integrated into existing laboratory setups due to their compact size, versatility, and compatibility with a wide range of laboratory equipment.

Diaphragm vacuum pumps can connect to laboratory apparatus such as filtration systems, rotary evaporators, vacuum ovens, and vacuum desiccators. They often feature standard connections, such as hose barbs or quick-connect fittings, that allow for easy and secure attachment to different laboratory devices. In many cases, diaphragm vacuum pumps can directly replace other types of vacuum pumps without requiring significant modifications to the existing setup.

The ability to integrate diaphragm vacuum pumps into laboratory setups offers advantages such as:

Oil-Free Operation: Diaphragm pumps do not require oil lubrication, eliminating the risk of oil contamination in the laboratory setup and reducing maintenance requirements.

Quiet Operation: Diaphragm pumps are known for their relatively quiet operation, making them suitable for laboratory environments where noise reduction is desirable.

Chemical Compatibility: Diaphragm pumps are available in models constructed with chemically resistant materials, allowing them to handle a wide range of solvents, gases, and vapors encountered in laboratory processes.

Industrial Processes: Diaphragm vacuum pumps can also be integrated into various industrial processes. They find applications in industries such as pharmaceuticals, food and beverage, electronics, automotive, and materials processing.

In industrial settings, diaphragm vacuum pumps can be used for tasks such as vacuum packaging, degassing, solvent recovery, pneumatic conveying, and vacuum drying. They can be incorporated into existing process lines and equipment, providing the necessary vacuum levels and performance required for the specific application.

Diaphragm vacuum pumps offer advantages in industrial processes, including:

Reliable Performance: Diaphragm pumps are known for their reliable operation, providing consistent vacuum levels and performance over time.

Energy Efficiency: Diaphragm pumps can be designed to be energy-efficient, contributing to cost savings and sustainability in industrial operations.

Low Maintenance: Diaphragm pumps generally have low maintenance requirements compared to other types of vacuum pumps, reducing downtime and operating costs.

When integrating diaphragm vacuum pumps into laboratory or industrial setups, it’s important to consider factors such as the required vacuum level, flow rate, compatibility with existing equipment, and any specific environmental or safety considerations. Additionally, consulting the manufacturer’s guidelines and seeking expert advice can ensure proper integration and optimal performance.

In summary, diaphragm vacuum pumps can be easily integrated into existing laboratory setups and industrial processes. Their compact size, versatility, oil-free operation, chemical compatibility, and reliable performance make them suitable for a wide range of applications. Whether in laboratory or industrial settings, diaphragm vacuum pumps offer advantages such as quiet operation, energy efficiency, and low maintenance requirements.

diaphragm vane pump

What is the ultimate vacuum level that diaphragm vacuum pumps can achieve?

Diaphragm vacuum pumps are capable of achieving moderate vacuum levels, but their ultimate vacuum level is limited compared to certain high-performance vacuum pumps. Here’s a detailed explanation:

Typically, diaphragm vacuum pumps can achieve vacuum levels up to about 1 torr or 1 mbar. This level of vacuum is suitable for applications that require low to medium vacuum conditions.

Diaphragm pumps operate based on the reciprocating motion of a flexible diaphragm, which creates the pumping action. However, due to the nature of their design, diaphragm pumps may encounter limitations in achieving extremely high vacuum levels. The diaphragm’s mechanical motion and the presence of clearance gaps in the valves and other internal components can restrict the pump’s ability to reach ultra-high vacuum ranges.

In contrast, other types of vacuum pumps, such as rotary vane pumps or turbo molecular pumps, are specifically designed to achieve much higher vacuum levels. Rotary vane pumps can typically achieve vacuum levels in the range of 10^-3 to 10^-4 torr, while turbo molecular pumps can extend into the ultra-high vacuum range of 10^-9 to 10^-10 torr.

It’s important to consider the specific vacuum level requirements of the application when choosing a vacuum pump. While diaphragm vacuum pumps may have limitations in terms of ultimate vacuum level, they offer other advantages such as oil-free operation, chemical resistance, and cost-effectiveness, making them suitable for a wide range of applications that do not require extreme vacuum levels.

diaphragm vane pump

What are the typical applications of diaphragm vacuum pumps in laboratories and industries?

Diaphragm vacuum pumps find widespread use in laboratories and various industries due to their versatile capabilities. Here’s a detailed explanation of the typical applications of diaphragm vacuum pumps in laboratories and industries:

In Laboratories:

Laboratory Research and Analysis: Diaphragm vacuum pumps are extensively used in laboratories for various research and analytical applications. They provide vacuum conditions necessary for techniques such as filtration, degassing, rotary evaporation, centrifugation, and vacuum ovens. Diaphragm pumps are also used in analytical instruments like gas chromatographs, mass spectrometers, and vacuum-based sample preparation systems.

Medical and Healthcare: Diaphragm pumps are employed in medical and healthcare settings for applications such as vacuum filtration in microbiology, vacuum aspiration in clinical laboratories, vacuum sealing of sterilized containers, and vacuum drying in medical device manufacturing. They are also used in dental clinics for suction and aspiration procedures.

Environmental Monitoring and Analysis: Diaphragm vacuum pumps play a crucial role in environmental monitoring and analysis. They are used for air sampling, gas collection, and monitoring of pollutants in ambient air or emission sources. Diaphragm pumps are utilized in environmental testing laboratories for sample preparation and analysis, such as water and soil testing.

In Industries:

Vacuum Filtration: Diaphragm vacuum pumps are commonly used in industries for filtration processes. They create a vacuum to draw liquids through a filter medium, separating solids from the liquid. This technique is widely employed in industries such as pharmaceuticals, biotechnology, food and beverage, and chemical processing.

Vacuum Drying and Degassing: Diaphragm pumps facilitate vacuum drying and degassing processes in industries. They help remove moisture or volatile substances from materials or products under vacuum conditions. This is crucial in industries like electronics manufacturing, automotive, aerospace, and materials science.

Automotive and Manufacturing Processes: Diaphragm vacuum pumps find applications in automotive and manufacturing processes. They are used for vacuum-assisted molding, vacuum lifting and handling of objects, vacuum packaging, and vacuum-based testing or leak detection in components and systems.

Semiconductor and Electronics Manufacturing: Diaphragm pumps are extensively utilized in the semiconductor and electronics industry. They provide vacuum conditions for processes such as wafer handling, thin film deposition, etching, and packaging. Diaphragm pumps are preferred due to their oil-free operation, which prevents contamination of sensitive electronic components.

These are some of the typical applications of diaphragm vacuum pumps in laboratories and industries. The versatility, oil-free operation, chemical resistance, and compact design of diaphragm pumps make them suitable for a wide range of applications, contributing to their popularity across various sectors.

China Custom Diaphragm Vacuum Pump GM-0.20 for Laboratory   vacuum pump brakesChina Custom Diaphragm Vacuum Pump GM-0.20 for Laboratory   vacuum pump brakes
editor by CX 2023-12-06